Influence of Isocyanate Content and Hot-Pressing Temperatures on the Physical–Mechanical Properties of Particleboard Bonded with a Hybrid Urea–Formaldehyde/Isocyanate Adhesive

cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid0000-0003-4957-1042
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orciddb2ff8e2-8bc0-4fd4-bbc1-07ba3ca94ccf
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.abstract.enParticleboard (PB) is mainly produced using urea–formaldehyde (UF) adhesive. However, the low hydrolytic stability of UF leads to poor water resistance by the PB. This research aimed to analyze the effect of hot-pressing temperatures and the addition of methylene diphenyl diisocyanate (MDI) in UF adhesive on the physical and mechanical properties of PB. The first experiment focused on pressing temperature treatments including 130, 140, 150, and 160 °C. The particles were bonded using a combination of UF and MDI resin at a ratio of 70/30 (%w/w). Furthermore, the second experiment focused on UF/MDI ratio treatment, including 100/0, 85/15, 70/30, and 55/45 (%w/w), and the particles were pressed at 140°C. All of the single-layer particleboard in this research were produced in 250 × 250 mm, with a target thickness and density of 10 mm and 750 kg/m3, respectively. This research used 12% resin content based on oven-dry weight wood shaving. The pressing time and pressing pressure were determined to be 10 min and 2.5 N/mm2, respectively. Before the tests, the board was conditioned for 7 days. When studying the effect of treatment temperature, good physical properties (thickness swelling and water absorption) and mechanical properties (MOR and MOE) were obtained at 140 °C. However, no significant difference was observed in the UF/MDI ratio between 85/15 and 55/45 using the same temperature. The increase in the MDI adhesive ratio improves the MOE and MOR values. However, the internal bond was the contrary. This study suggests that a combination of UF/MDI at a ratio of 85/15 and hot-pressing temperature at 140 °C could produce a PB panel that meets a type 8 particleboard according to the JIS A5908-2003 standard and type P2 according to the EN 312-2010 standard.
dc.affiliationWydział Leśny i Technologii Drewna
dc.affiliation.instituteKatedra Meblarstwa
dc.contributor.authorIswanto, Apri Heri
dc.contributor.authorSutiawan, Jajang
dc.contributor.authorDarwis, Atmawi
dc.contributor.authorLubis, Muhammad Adly Rahandi
dc.contributor.authorPędzik, Marta
dc.contributor.authorRogoziński, Tomasz
dc.contributor.authorFatriasari, Widya
dc.date.access2025-07-07
dc.date.accessioned2025-09-09T06:08:56Z
dc.date.available2025-09-09T06:08:56Z
dc.date.copyright2023-02-06
dc.date.issued2023
dc.description.abstract<jats:p>Particleboard (PB) is mainly produced using urea–formaldehyde (UF) adhesive. However, the low hydrolytic stability of UF leads to poor water resistance by the PB. This research aimed to analyze the effect of hot-pressing temperatures and the addition of methylene diphenyl diisocyanate (MDI) in UF adhesive on the physical and mechanical properties of PB. The first experiment focused on pressing temperature treatments including 130, 140, 150, and 160 °C. The particles were bonded using a combination of UF and MDI resin at a ratio of 70/30 (%w/w). Furthermore, the second experiment focused on UF/MDI ratio treatment, including 100/0, 85/15, 70/30, and 55/45 (%w/w), and the particles were pressed at 140°C. All of the single-layer particleboard in this research were produced in 250 × 250 mm, with a target thickness and density of 10 mm and 750 kg/m3, respectively. This research used 12% resin content based on oven-dry weight wood shaving. The pressing time and pressing pressure were determined to be 10 min and 2.5 N/mm2, respectively. Before the tests, the board was conditioned for 7 days. When studying the effect of treatment temperature, good physical properties (thickness swelling and water absorption) and mechanical properties (MOR and MOE) were obtained at 140 °C. However, no significant difference was observed in the UF/MDI ratio between 85/15 and 55/45 using the same temperature. The increase in the MDI adhesive ratio improves the MOE and MOR values. However, the internal bond was the contrary. This study suggests that a combination of UF/MDI at a ratio of 85/15 and hot-pressing temperature at 140 °C could produce a PB panel that meets a type 8 particleboard according to the JIS A5908-2003 standard and type P2 according to the EN 312-2010 standard.</jats:p>
dc.description.accesstimeat_publication
dc.description.bibliographyil., bibliogr.
dc.description.financepublication_nocost
dc.description.financecost0,00
dc.description.if2,4
dc.description.number2
dc.description.points100
dc.description.versionfinal_published
dc.description.volume14
dc.identifier.doi10.3390/f14020320
dc.identifier.issn1999-4907
dc.identifier.urihttps://sciencerep.up.poznan.pl/handle/item/4673
dc.identifier.weblinkhttp://www.mdpi.com/1999-4907/14/2/320
dc.languageen
dc.relation.ispartofForests
dc.relation.pagesart. 320
dc.rightsCC-BY
dc.sciencecloudsend
dc.share.typeOPEN_JOURNAL
dc.subject.enbasic properties
dc.subject.enwood shaving
dc.subject.encomposite
dc.subject.encomposites materials
dc.subject.enadhesive combination
dc.titleInfluence of Isocyanate Content and Hot-Pressing Temperatures on the Physical–Mechanical Properties of Particleboard Bonded with a Hybrid Urea–Formaldehyde/Isocyanate Adhesive
dc.title.volumeSpecial Issue Advanced Eco-Friendly Wood-Based Composites II
dc.typeJournalArticle
dspace.entity.typePublication
oaire.citation.issue2
oaire.citation.volume14