Analysis of Physio-Biochemical Responses and Expressional Profiling Antioxidant-Related Genes in Some Neglected Aegilops Species under Salinity Stress

cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid0000-0002-0102-0084
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid51a5a68b-106b-4e9d-bd9b-79d15d3ec0c1
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.abstract.enWild common wheat species represent a significant pool of resistance genes to various environmental stresses. In this study, we examined several physiological traits and the activity of three antioxidant enzymes—namely, catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX)—as well as the expression patterns of their encoding genes in three neglected Aegilops species with alien genomes (including Ae. triuncialis (UUCC-genome), Ae. neglecta (UUMM-genome) and Ae. umbellulata (UU-genome)) under two control (0 mM NaCl) and salinity (250 mM NaCl) conditions. The results of the analysis of variance (ANOVA) showed highly significant effects of salinity stress, accessions, and their interaction on most physio-biochemical traits, root and shoot dry biomasses, and antioxidant-related gene expression level. As a result of comparison between Aegilops species and a bread wheat cultivar (cv. Narin as a salt-tolerant reference variety), Ae. triuncialis responded well to salinity stress, maintaining both ionic homeostasis capability and biochemical ability. Moreover, transcriptional data revealed the prominence of Ae. triuncialis over other Aegilops species and salt-tolerant bread wheat [cv. Narin] in terms of the level of expression of antioxidant genes (APX, SOD, and CAT). This result was further supported by a biplot rendered based on principal component analysis (PCA), where this wild relative showed a positive association with most measured traits under salinity stress. Moreover, we speculate that this accession can be subjected to physiological and molecular studies, and that it can provide new insights into the use of the alien genomes in future wheat breeding programs.
dc.affiliationWydział Rolnictwa, Ogrodnictwa i Biotechnologii
dc.affiliation.instituteKatedra Metod Matematycznych i Statystycznych
dc.contributor.authorJamshidi, Bita
dc.contributor.authorPour-Aboughadareh, Alireza
dc.contributor.authorBocianowski, Jan
dc.contributor.authorShooshtari, Lia
dc.contributor.authorBujak, Henryk
dc.contributor.authorTürkoğlu, Aras
dc.contributor.authorNowosad, Kamila
dc.date.access2025-08-29
dc.date.accessioned2025-08-29T08:25:17Z
dc.date.available2025-08-29T08:25:17Z
dc.date.copyright2023-07-27
dc.date.issued2023
dc.description.abstract<jats:p>Wild common wheat species represent a significant pool of resistance genes to various environmental stresses. In this study, we examined several physiological traits and the activity of three antioxidant enzymes—namely, catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX)—as well as the expression patterns of their encoding genes in three neglected Aegilops species with alien genomes (including Ae. triuncialis (UUCC-genome), Ae. neglecta (UUMM-genome) and Ae. umbellulata (UU-genome)) under two control (0 mM NaCl) and salinity (250 mM NaCl) conditions. The results of the analysis of variance (ANOVA) showed highly significant effects of salinity stress, accessions, and their interaction on most physio-biochemical traits, root and shoot dry biomasses, and antioxidant-related gene expression level. As a result of comparison between Aegilops species and a bread wheat cultivar (cv. Narin as a salt-tolerant reference variety), Ae. triuncialis responded well to salinity stress, maintaining both ionic homeostasis capability and biochemical ability. Moreover, transcriptional data revealed the prominence of Ae. triuncialis over other Aegilops species and salt-tolerant bread wheat [cv. Narin] in terms of the level of expression of antioxidant genes (APX, SOD, and CAT). This result was further supported by a biplot rendered based on principal component analysis (PCA), where this wild relative showed a positive association with most measured traits under salinity stress. Moreover, we speculate that this accession can be subjected to physiological and molecular studies, and that it can provide new insights into the use of the alien genomes in future wheat breeding programs.</jats:p>
dc.description.accesstimeat_publication
dc.description.bibliographyil., bibliogr.
dc.description.financepublication_nocost
dc.description.financecost0,00
dc.description.if3,3
dc.description.number8
dc.description.points100
dc.description.versionfinal_published
dc.description.volume13
dc.identifier.doi10.3390/agronomy13081981
dc.identifier.issn2073-4395
dc.identifier.urihttps://sciencerep.up.poznan.pl/handle/item/4512
dc.identifier.weblinkhttps://www.mdpi.com/2073-4395/13/8/1981
dc.languageen
dc.pbn.affiliationagriculture and horticulture
dc.relation.ispartofAgronomy
dc.relation.pagesart. 1981
dc.rightsCC-BY
dc.sciencecloudnosend
dc.share.typeOPEN_JOURNAL
dc.subject.enancestor species
dc.subject.enwheat
dc.subject.ensalt tolerance
dc.subject.enbiochemical markers
dc.subject.engene expression
dc.titleAnalysis of Physio-Biochemical Responses and Expressional Profiling Antioxidant-Related Genes in Some Neglected Aegilops Species under Salinity Stress
dc.title.volumeSpecial Issue Plant Genetic Resources and Biotechnology
dc.typeJournalArticle
dspace.entity.typePublication
oaire.citation.issue8
oaire.citation.volume13