Electromyographic analysis of upper limb muscles for automatic wheelchair propulsion control

cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid0000-0003-0076-3190
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcidbe4662f0-4144-45b2-96f7-33f2859e6d5e
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.abstract.enEquipping hand-propelled wheelchairs with supplementary power assistance systems combining the advantages of manual and electric wheelchairs. The study aims to develop innovative automatic steering strategies for assistive drive systems. Our approach involves regulating the intensity of power assistance using one upper arm's electromyography (EMG) signals, significantly simplifying the control system. However, the inherent asymmetry between the actions of the right and left upper limbs (handedness) poses a challenge. To address this, we set out to identify the upper limb muscle group exhibiting the least propelling asymmetry between the left and right sides, thereby determining the most suitable candidate for controlling the assistive drive of a wheelchair. The study used a standard manual-powered wheelchair and a single non-disabled research participant. Muscle activity in each upper limb during wheelchair propulsion was measured using EMG equipment. Eight muscle examinations were performed on each upper limb: biceps brachii (A), triceps brachii (B), medial epicondyle (C), extensor carpi radialis longus (D), anterior epicondyle (E), posterior epicondyle (F), trapezius, middle region (G), and subscapularis (H). The mean maximal muscle EMG signal was analyzed based on six cycles of wheelchair propulsion. The asymmetry of EMG values for the left and right limbs can vary from 15% to 53%, depending on the muscle studied. Our findings reveal that the D muscle displays the least muscular asymmetry during wheelchair propulsion, suggesting that the tension signals of this muscle can effectively regulate the intensity of assisted wheelchair propulsion.
dc.abstract.plWyposażenie wózków inwalidzkich z napędem ręcznym w dodatkowe napędy wspomagające łączy zalety wózków ręcznych i elektrycznych. Wymaga to jednak opracowania nowatorskich strategii automatycznego sterowania dla takich systemów napędu wspomagającego. Nasze podejście polega na regulowaniu intensywności wspomagania za pomocą sygnałów elektromiograficznych (EMG) jednego kończyny górnej, co znacznie upraszcza system sterowania. Wyzwaniem jest jednak asymetria pomiędzy działaniami prawej i lewej kończyny. Aby rozwiązać ten problem, postanowiliśmy zidentyfikować grupę mięśni kończyny górnej wykazującą najmniejszą asymetrię napędową pomiędzy lewą i prawą stroną, określając w ten sposób najbardziej odpowiedniego kandydata do kontrolowania napędu wspomagającego wózka inwalidzkiego. Badanie obejmowało standardowy wózek inwalidzki z napędem ręcznym i jednego pełnosprawnego uczestnika. Aktywność mięśni każdej kończyny górnej podczas poruszania się wózkiem inwalidzkim mierzono za pomocą aparatury EMG. Na każdej kończynie górnej wykonano pomiary dla ośmiu mięśni: dwugłowego ramienia (A), trójgłowego ramienia (B), nadkłykcia przyśrodkowego (C), prostownika promieniowego długiego nadgarstka (D), nadkłykcia przedniego (E), nadkłykcia tylnego (F), mięśnia czworobocznego (region środkowy) (G) i podłopatkowego (H). Analizowano średni maksymalny sygnał EMG każdego mięśnia na podstawie sześciu cykli napędu wózka inwalidzkiego. Badania wykazały, że asymetria wartości sygnału EMG dla kończyny lewej i prawej może wahać się od 15% do 53%, w zależności od badanego mięśnia. Grupy mięśni charakteryzujące się małą wartością różnicy EMG najlepiej nadają się do sterowania napędem w oparciu o sygnał EMG z pojedynczej kończyny. Mięsień D wykazywał najmniejszą asymetrię mięśniową. Wyniki te sugerują, że sygnały tego mięśnia mogą skutecznie regulować intensywność wspomaganego napędu wózka inwalidzkiego.
dc.affiliationWydział Leśny i Technologii Drewna
dc.affiliation.instituteKatedra Obrabiarek i Podstaw Konstrukcji Maszyn
dc.contributor.authorWieczorek, Bartosz
dc.contributor.authorWarguła, Łukasz
dc.contributor.authorGierz, Łukasz
dc.contributor.authorZharkevich, Olga
dc.contributor.authorNikonova, Tatiana
dc.contributor.authorSydor, Maciej
dc.date.access2025-05-13
dc.date.accessioned2025-08-12T08:54:57Z
dc.date.available2025-08-12T08:54:57Z
dc.date.copyright2024
dc.date.issued2024
dc.description.accesstimeat_publication
dc.description.bibliographyil., bibliogr.
dc.description.financepublication_nocost
dc.description.financecost0,00
dc.description.if0,4
dc.description.number11
dc.description.points70
dc.description.versionfinal_published
dc.identifier.doi10.15199/48.2024.11.02
dc.identifier.eissn2449-9544
dc.identifier.issn0033-2097
dc.identifier.urihttps://sciencerep.up.poznan.pl/handle/item/4147
dc.identifier.weblinkhttp://pe.org.pl/abstract_pl.php?nid=14696
dc.languageen
dc.language.otherpl
dc.relation.ispartofPrzegląd Elektrotechniczny
dc.relation.pages6-11
dc.rightsOther
dc.sciencecloudsend
dc.share.typeOTHER
dc.subject.enassistive technology
dc.subject.enhybrid drive
dc.subject.enmuscle asymmetry
dc.subject.enlaterality
dc.subject.pltechnologia wspomagająca
dc.subject.plnapęd hybrydowy
dc.subject.plasymetria mięśni
dc.subject.pllateralność
dc.titleElectromyographic analysis of upper limb muscles for automatic wheelchair propulsion control
dc.title.alternativeAnaliza elektromiograficzna mięśni kończyn górnych do automatycznej kontroli napędu wózka inwalidzkiego
dc.typeJournalArticle
dspace.entity.typePublication
oaire.citation.issue11
oaire.citation.volume1