Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Application of Machine Learning to Assess the Quality of Food Products - Case Study: Coffee Bean
 
Full item page
Options

Application of Machine Learning to Assess the Quality of Food Products - Case Study: Coffee Bean

Type
Journal article
Language
English
Date issued
2023
Author
Przybył, Krzysztof 
Gawrysiak-Witulska, Marzena Bernadeta 
Bielska, Paulina 
Rusinek, Robert
Gancarz, Marek
Dobrzański, Bohdan
Siger, Aleksander 
Faculty
Wydział Nauk o Żywności i Żywieniu
Journal
Applied Sciences (Switzerland)
ISSN
2076-3417
DOI
10.3390/app131910786
Web address
https://www.mdpi.com/2076-3417/13/19/10786
Volume
13
Number
19
Pages from-to
art. 10786
Abstract (EN)
Modern machine learning methods were used to automate and improve the determination of an effective quality index for coffee beans. Machine learning algorithms can effectively recognize various anomalies, among others factors, occurring in a food product. The procedure for preparing the machine learning algorithm depends on the correct preparation and preprocessing of the learning set. The set contained coded information (i.e., selected quality coefficients) based on digital photos (input data) and a specific class of coffee bean (output data). Because of training and data tuning, an adequate convolutional neural network (CNN) was obtained, which was characterized by a high recognition rate of these coffee beans at the level of 0.81 for the test set. Statistical analysis was performed on the color data in the RGB color space model, which made it possible to accurately distinguish three distinct categories of coffee beans. However, using the Lab* color model, it became apparent that distinguishing between the quality categories of under-roasted and properly roasted coffee beans was a major challenge. Nevertheless, the Lab* model successfully distinguished the category of over-roasted coffee beans.
Keywords (EN)
  • artificial intelligence

  • deep learning

  • convolutional neural networks (C...

  • coffee bean

License
cc-bycc-by CC-BY - Attribution
Open access date
September 28, 2023
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia