Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Changes in Camelina sativa Yield Based on Temperature and Precipitation Using FDA
 
Full item page
Options

Changes in Camelina sativa Yield Based on Temperature and Precipitation Using FDA

Type
Journal article
Language
English
Date issued
2025
Author
Graczyk, Małgorzata 
Kurasiak-Popowska, Danuta 
Niedziela, Grażyna 
Faculty
Wydział Rolnictwa, Ogrodnictwa i Biotechnologii
PBN discipline
agriculture and horticulture
Journal
Agriculture (Switzerland)
DOI
10.3390/agriculture15192051
Web address
https://www.mdpi.com/2077-0472/15/19/2051
Volume
15
Number
19
Pages from-to
art. 2051
Abstract (EN)
Camelina (Camelina sativa) is an oilseed crop of increasing importance, valued not only for its adaptability to diverse environmental conditions and potential for sustainable agriculture but also for its economic advantages, including low input requirements and suitability for biofuel production and niche markets. This study examines the relationship between camelina yield and climatic variables—specifically temperature and precipitation—based on a ten-year field experiment conducted in Poland. To capture the temporal dynamics of weather conditions, Functional Data Analysis (FDA) was applied to daily temperature and precipitation data. The analysis revealed that yield variability was strongly influenced by the length of the vegetative period and specific weather patterns in April and July. Higher yields were recorded in years characterized by moderate spring temperatures, elevated temperatures in July, and evenly distributed rainfall during the early generative growth stages. The Maximal Information Coefficient (MIC) confirmed the relevance of these variables, with the duration of the vegetative phase showing the strongest correlation with yield. Cluster analysis further distinguished high- and low-yield years based on functional weather profiles. The FDA-based approach provided clear, interpretable insights into climate–yield interactions and demonstrated greater effectiveness than traditional regression models in capturing complex, time-dependent relationships. These findings enhance our understanding of camelina’s response to climatic variability and support the development of predictive tools for resilient, climate-smart crop management.
Keywords (EN)
  • camelina

  • weather condition

  • Functional Data Analysis (FDA)

  • climate–yield relationship

License
cc-bycc-by CC-BY - Attribution
Open access date
September 30, 2025
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia