Selection of High-Yielding and Stable Genotypes of Barley for the Cold Climate in Iran

cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid0000-0002-0102-0084
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid51a5a68b-106b-4e9d-bd9b-79d15d3ec0c1
dc.abstract.enThe interaction between genotypes and environments plays an important role in selecting superior genotypes for target locations. The main objectives of the present study were to analyze the effect of the genotype-by-environment interaction (GEI) and identify superior, newly developed, and promising barley genotypes for cold regions in Iran. For these purposes, a set of genotypes obtained from breeding programs for cold climates in Iran, along with two reference genotypes, were investigated at eight research stations (Tabriz, Ardabil, Arak, Miandoab, Mashhad, Jolge Rokh, Karaj, and Hamadan) during two consecutive growing seasons (2019–2020 and 2020–2021). The results of the freezing test (LT50) showed that most of the tested genotypes had significant cold tolerance at the seedling stage. Based on the additive main effect and multiplicative interaction (AMMI) analysis, environment (E) and GEI effects explained 49.44% and 16.55% of the total variation in grain yield, respectively. Using AMMI1 and AMMI2 models, G2 and G20 were found to be superior genotypes in terms of grain yield and stability. Moreover, AMMI-based stability parameters considered the G20 genotype to be the ideal genotype. A two-plot analysis of the genotype-by-environment interaction (GGE) biplot showed that the 16 experimental environments were grouped into 2 mega-environments. Of the test environments, ARK1 and KAJ2 had the highest discriminating power and representativeness ability, and these were identified as ideal environments for testing advanced genotypes for yield and stability performance during early barley breeding practices in cold areas in Iran. In conclusion, both AMMI and GGE biplot models identified several superior genotypes, among which G20, with a high average yield relative to the overall average yield and the lowest IPC1 score, was found to have high yield stability and is recommended for inclusion in breeding programs for cold climates in Iran.
dc.affiliationWydział Rolnictwa, Ogrodnictwa i Biotechnologii
dc.affiliation.instituteKatedra Metod Matematycznych i Statystycznych
dc.contributor.authorPour-Aboughadareh, Alireza
dc.contributor.authorGhazvini, Habibollah
dc.contributor.authorJasemi, Seyed Shahriyar
dc.contributor.authorMohammadi, Solaiman
dc.contributor.authorRazavi, Sayed Alireza
dc.contributor.authorChaichi, Mehrdad
dc.contributor.authorGhasemi Kalkhoran, Marefat
dc.contributor.authorMonirifar, Hassan
dc.contributor.authorTajali, Hamid
dc.contributor.authorFathihafshjani, Asadollah
dc.contributor.authorBocianowski, Jan
dc.date.access2025-08-29
dc.date.accessioned2025-08-29T12:43:41Z
dc.date.available2025-08-29T12:43:41Z
dc.date.copyright2023-06-22
dc.date.issued2023
dc.description.abstract<jats:p>The interaction between genotypes and environments plays an important role in selecting superior genotypes for target locations. The main objectives of the present study were to analyze the effect of the genotype-by-environment interaction (GEI) and identify superior, newly developed, and promising barley genotypes for cold regions in Iran. For these purposes, a set of genotypes obtained from breeding programs for cold climates in Iran, along with two reference genotypes, were investigated at eight research stations (Tabriz, Ardabil, Arak, Miandoab, Mashhad, Jolge Rokh, Karaj, and Hamadan) during two consecutive growing seasons (2019–2020 and 2020–2021). The results of the freezing test (LT50) showed that most of the tested genotypes had significant cold tolerance at the seedling stage. Based on the additive main effect and multiplicative interaction (AMMI) analysis, environment (E) and GEI effects explained 49.44% and 16.55% of the total variation in grain yield, respectively. Using AMMI1 and AMMI2 models, G2 and G20 were found to be superior genotypes in terms of grain yield and stability. Moreover, AMMI-based stability parameters considered the G20 genotype to be the ideal genotype. A two-plot analysis of the genotype-by-environment interaction (GGE) biplot showed that the 16 experimental environments were grouped into 2 mega-environments. Of the test environments, ARK1 and KAJ2 had the highest discriminating power and representativeness ability, and these were identified as ideal environments for testing advanced genotypes for yield and stability performance during early barley breeding practices in cold areas in Iran. In conclusion, both AMMI and GGE biplot models identified several superior genotypes, among which G20, with a high average yield relative to the overall average yield and the lowest IPC1 score, was found to have high yield stability and is recommended for inclusion in breeding programs for cold climates in Iran.</jats:p>
dc.description.accesstimeat_publication
dc.description.bibliographyil., bibliogr.
dc.description.financepublication_nocost
dc.description.financecost0,00
dc.description.if4,0
dc.description.number13
dc.description.points70
dc.description.versionfinal_published
dc.description.volume12
dc.identifier.doi10.3390/plants12132410
dc.identifier.issn2223-7747
dc.identifier.urihttps://sciencerep.up.poznan.pl/handle/item/4535
dc.identifier.weblinkhttps://www.mdpi.com/2223-7747/12/13/2410
dc.languageen
dc.pbn.affiliationagriculture and horticulture
dc.relation.ispartofPlants
dc.relation.pagesart. 2410
dc.rightsCC-BY
dc.sciencecloudnosend
dc.share.typeOPEN_JOURNAL
dc.subject.encold area
dc.subject.enmega-environments
dc.subject.enmulti-environment trials
dc.subject.enbarley
dc.subject.enstability analysis
dc.titleSelection of High-Yielding and Stable Genotypes of Barley for the Cold Climate in Iran
dc.typeJournalArticle
dspace.entity.typePublication
oaire.citation.issue13
oaire.citation.volume12