Ecophysiological variables retrieval and early stress detection: insights from a synthetic spatial scaling exercise

cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid0000-0002-0953-7045
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid0af80967-45b1-40e8-a0bf-9989e4e639c2
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.abstract.enThe ability to access physiologically driven signals, such as surface temperature, photochemical reflectance index (PRI), and sun-induced chlorophyll fluorescence (SIF), through remote sensing (RS) are exciting developments for vegetation studies. Accessing this ecophysiological information requires considering processes operating at scales from the top-of-the-canopy to the photosystems, adding complexity compared to reflectance index-based approaches. To investigate the maturity and knowledge of the growing RS community in this area, COST Action CA17134 SENSECO organized a Spatial Scaling Challenge (SSC). Challenge participants were asked to retrieve four key ecophysiological variables for a field each of maize and wheat from a simulated field campaign: leaf area index (LAI), leaf chlorophyll content (Cab), maximum carboxylation rate (Vcmax,25), and non-photochemical quenching (NPQ). The simulated campaign data included hyperspectral optical, thermal and SIF imagery, together with ground sampling of the four variables. Non-parametric methods that combined multiple spectral domains and field measurements were used most often, thereby indirectly performing the top-of-the-canopy to photosystem scaling. LAI and Cab were reliably retrieved in most cases, whereas Vcmax,25 and NPQ were less accurately estimated and demanded information ancillary to RS imagery. The factors considered least by participants were the biophysical and physiological canopy vertical profiles, the spatial mismatch between RS sensors, the temporal mismatch between field sampling and RS acquisition, and measurement uncertainty. Furthermore, few participants developed NPQ maps into stress maps or provided a deeper analysis of their parameter retrievals. The SSC shows that, despite advances in statistical and physically based models, the vegetation RS community should improve how field and RS data are integrated and scaled in space and time. We expect this work will guide newcomers and support robust advances in this research field.
dc.affiliationWydział Inżynierii Środowiska i Inżynierii Mechanicznej
dc.affiliation.instituteKatedra Ekologii i Ochrony Środowiska
dc.contributor.authorPacheco-Labrador, Javier
dc.contributor.authorCendrero-Mateo, M.Pilar
dc.contributor.authorVan Wittenberghe, Shari
dc.contributor.authorHernandez-Sequeira, Itza
dc.contributor.authorKoren, Gerbrand
dc.contributor.authorPrikaziuk, Egor
dc.contributor.authorFóti, Szilvia
dc.contributor.authorTomelleri, Enrico
dc.contributor.authorMaseyk, Kadmiel
dc.contributor.authorČereković, Nataša
dc.contributor.authorGonzalez-Cascon, Rosario
dc.contributor.authorMalenovský, Zbyněk
dc.contributor.authorAlbert-Saiz, Mar
dc.contributor.authorAntala, Michal
dc.contributor.authorBalogh, János
dc.contributor.authorBuddenbaum, Henning
dc.contributor.authorDehghan-Shoar, Mohammad Hossain
dc.contributor.authorFennell, Joseph T.
dc.contributor.authorFéret, Jean-Baptiste
dc.contributor.authorBalde, Hamadou
dc.contributor.authorMachwitz, Miriam
dc.contributor.authorMészáros, Ádám
dc.contributor.authorMiao, Guofang
dc.contributor.authorMorata, Miguel
dc.contributor.authorNaethe, Paul
dc.contributor.authorNagy, Zoltán
dc.contributor.authorPintér, Krisztina
dc.contributor.authorPullanagari, R. Reddy
dc.contributor.authorRastogi, Anshu
dc.contributor.authorSiegmann, Bastian
dc.contributor.authorWang, Sheng
dc.contributor.authorZhang, Chenhui
dc.contributor.authorKopkáně, Daniel
dc.date.access2024-12-18
dc.date.accessioned2024-12-18T11:02:49Z
dc.date.available2024-12-18T11:02:49Z
dc.date.copyright2024-10-28
dc.date.issued2024
dc.description.bibliographyil., bibliogr.
dc.description.financepublication_research
dc.description.financecost15730,00
dc.description.versionfinal_published
dc.identifier.doi10.1080/01431161.2024.2414435
dc.identifier.eissn1366-5901
dc.identifier.issn0143-1161
dc.identifier.urihttps://sciencerep.up.poznan.pl/handle/item/2247
dc.identifier.weblinkhttps://www.tandfonline.com/doi/full/10.1080/01431161.2024.2414435?scroll=top&needAccess=true#abstract
dc.languageen
dc.pbn.affiliationenvironmental engineering, mining and energy
dc.relation.ispartofInternational Journal of Remote Sensing
dc.rightsCC-BY
dc.sciencecloudnosend
dc.subject.enRemote sensing
dc.subject.enplant physiology
dc.subject.enspatial scaling
dc.subject.entemporal mismatch
dc.subject.enfluorescence
dc.subject.enthermal
dc.subject.enhyperspectral
dc.subject.entop of the canopy
dc.subject.endown-scaling
dc.subtypeArticleEarlyAccess
dc.titleEcophysiological variables retrieval and early stress detection: insights from a synthetic spatial scaling exercise
dc.typeJournalArticle
dspace.entity.typePublication