Limitations of the Farquhar–von Caemmerer–Berry Model in Estimating the Maximum Electron Transport Rate: Evidence from Four C3 Species

cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid0000-0001-5564-7360
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid62199eda-fe32-456c-9935-2e55f2101f3a
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.abstract.enThe study evaluates the accuracy of two FvCB model sub-models (I and II) in estimating the maximum electron transport rate for CO2 assimilation (JA-max) by comparing estimated values with observed maximum electron transport rates (Jf-max) in four C3 species: Triticum aestivum L., Silphium perfoliatum L., Lolium perenne L., and Trifolium pratense L. Significant discrepancies were found between JA-max estimates from sub-model I and observed Jf-max values for T. aestivum, S. perfoliatum, and T. pratense (p < 0.05), with sub-model I overestimating JA-max for T. aestivum. Sub-model II consistently produced higher JA-max estimates than sub-model I. This study highlights limitations in the FvCB sub-models, particularly their tendency to overestimate JA-max when accounting for electron consumption by photorespiration (JO), nitrate reduction (JNit), and the Mehler reaction (JMAP). An alternative empirical model provided more accurate Jf-max estimates, suggesting the need for improved approaches to model photosynthetic electron transport. These findings have important implications for crop yield prediction, ecological modeling, and climate change adaptation strategies, emphasizing the need for more accurate estimation methods in plant physiology research.
dc.affiliationWydział Leśny i Technologii Drewna
dc.affiliation.instituteKatedra Hodowli Lasu
dc.contributor.authorYe, Zipiao
dc.contributor.authorHu, Wenhai
dc.contributor.authorZhou, Shuangxi
dc.contributor.authorRobakowski, Piotr
dc.contributor.authorKang, Huajing
dc.contributor.authorAn, Ting
dc.contributor.authorWang, Fubiao
dc.contributor.authorXiao, Yi’an
dc.contributor.authorYang, Xiaolong
dc.date.access2025-08-28
dc.date.accessioned2025-08-28T06:30:53Z
dc.date.available2025-08-28T06:30:53Z
dc.date.copyright2025-05-29
dc.date.issued2025
dc.description.abstract<jats:p>The study evaluates the accuracy of two FvCB model sub-models (I and II) in estimating the maximum electron transport rate for CO2 assimilation (JA-max) by comparing estimated values with observed maximum electron transport rates (Jf-max) in four C3 species: Triticum aestivum L., Silphium perfoliatum L., Lolium perenne L., and Trifolium pratense L. Significant discrepancies were found between JA-max estimates from sub-model I and observed Jf-max values for T. aestivum, S. perfoliatum, and T. pratense (p &lt; 0.05), with sub-model I overestimating JA-max for T. aestivum. Sub-model II consistently produced higher JA-max estimates than sub-model I. This study highlights limitations in the FvCB sub-models, particularly their tendency to overestimate JA-max when accounting for electron consumption by photorespiration (JO), nitrate reduction (JNit), and the Mehler reaction (JMAP). An alternative empirical model provided more accurate Jf-max estimates, suggesting the need for improved approaches to model photosynthetic electron transport. These findings have important implications for crop yield prediction, ecological modeling, and climate change adaptation strategies, emphasizing the need for more accurate estimation methods in plant physiology research.</jats:p>
dc.description.accesstimeat_publication
dc.description.bibliographyil., bibliogr.
dc.description.financepublication_nocost
dc.description.financecost0,00
dc.description.if3,5
dc.description.number6
dc.description.points100
dc.description.versionfinal_published
dc.description.volume14
dc.identifier.doi10.3390/biology14060630
dc.identifier.issn2079-7737
dc.identifier.urihttps://sciencerep.up.poznan.pl/handle/item/4452
dc.identifier.weblinkhttps://www.mdpi.com/2079-7737/14/6/630
dc.languageen
dc.pbn.affiliationforestry
dc.relation.ispartofBiology
dc.relation.pagesart. 630
dc.rightsCC-BY
dc.sciencecloudsend
dc.share.typeOPEN_JOURNAL
dc.subject.enFarquhar–von Caemmerer–Berry (FvCB) model
dc.subject.enmaximum electron transport rate for CO2 assimilation (JA-max)
dc.subject.enCO2 response
dc.subject.enobservation-modelling intercomparison
dc.titleLimitations of the Farquhar–von Caemmerer–Berry Model in Estimating the Maximum Electron Transport Rate: Evidence from Four C3 Species
dc.title.volumeSpecial Issue Plant Stress Physiology: A Trait Perspective
dc.typeJournalArticle
dspace.entity.typePublication
oaire.citation.issue6
oaire.citation.volume14