Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Using Neural Networks to Identify Technological Stress Using the Example of Crop Compaction
 
Full item page
Options

Using Neural Networks to Identify Technological Stress Using the Example of Crop Compaction

Type
Journal article conference
Language
English
Date issued
2024
Author
Kiktev, Nikolay
Dudnyk, Alla
Opryshko, Oleksiy
Komarchuk, Dmytro
Witaszek, Kamil Krzysztof 
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
Journal
CEUR Workshop Proceedings
ISSN
1613-0073
Web address
https://ceur-ws.org/Vol-3680/S3Paper11.pdf
Volume
3680
Pages from-to
1-11
Abstract (EN)
The article is devoted to the study of the use of neural networks to identify the technological stress of plantations in the technologies of precision agriculture. The study takes into account such complex aspects of sample selection as the speed of image acquisition, the effectiveness of assessing the state of crop compaction, etc. The use of neural networks makes it possible to automate and increase the accuracy of selection, to improve the quality of the analysis of plant stands, provided that the technology of evaluating soil samples is followed. The obtained results indicate the prospects of implementing this approach in modern agriculture.
Keywords (EN)
  • neural network

  • precision farming

  • image recognition

  • education

  • crop density

  • technological stress.

License
cc-bycc-by CC-BY - Attribution
Open access date
May 8, 2024
Conference title
Digital Technologies in Education, Science and Industry 2023, DTESI 2023, Proceedings of the 8th International Conference, December 6-7, 2023, Almaty, Kazakhstan
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia