Using Neural Networks to Identify Technological Stress Using the Example of Crop Compaction
cris.virtual.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.author-orcid | d0f13f67-14d4-453a-9b21-2771d083450d | |
cris.virtualsource.author-orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
dc.abstract.en | The article is devoted to the study of the use of neural networks to identify the technological stress of plantations in the technologies of precision agriculture. The study takes into account such complex aspects of sample selection as the speed of image acquisition, the effectiveness of assessing the state of crop compaction, etc. The use of neural networks makes it possible to automate and increase the accuracy of selection, to improve the quality of the analysis of plant stands, provided that the technology of evaluating soil samples is followed. The obtained results indicate the prospects of implementing this approach in modern agriculture. | |
dc.affiliation | Wydział Inżynierii Środowiska i Inżynierii Mechanicznej | |
dc.affiliation.institute | Katedra Inżynierii Biosystemów | |
dc.conference | Digital Technologies in Education, Science and Industry 2023 | |
dc.conference.country | Kazakhstan | |
dc.conference.coverage | international | |
dc.conference.datefinish | 2023-12-07 | |
dc.conference.datestart | 2023-12-06 | |
dc.conference.place | Almaty | |
dc.conference.series | Digital Technologies in Education, Science and Industry | |
dc.conference.seriesshortcut | DTESI | |
dc.conference.seriesweblink | https://ceur-ws.org/ | |
dc.conference.shortcut | DTESI 2023 | |
dc.conference.title | Digital Technologies in Education, Science and Industry 2023, DTESI 2023, Proceedings of the 8th International Conference, December 6-7, 2023, Almaty, Kazakhstan | |
dc.conference.weblink | https://ceur-ws.org/Vol-3680/ | |
dc.contributor.author | Kiktev, Nikolay | |
dc.contributor.author | Dudnyk, Alla | |
dc.contributor.author | Opryshko, Oleksiy | |
dc.contributor.author | Komarchuk, Dmytro | |
dc.contributor.author | Witaszek, Kamil Krzysztof | |
dc.date.access | 2024-11-25 | |
dc.date.accessioned | 2024-11-25T10:48:54Z | |
dc.date.available | 2024-11-25T10:48:54Z | |
dc.date.copyright | 2024-05-08 | |
dc.date.issued | 2024 | |
dc.description.accesstime | at_publication | |
dc.description.bibliography | il., bibliogr. | |
dc.description.finance | publication_nocost | |
dc.description.financecost | 0,00 | |
dc.description.points | 5 | |
dc.description.version | final_published | |
dc.description.volume | 3680 | |
dc.identifier.issn | 1613-0073 | |
dc.identifier.uri | https://sciencerep.up.poznan.pl/handle/item/2067 | |
dc.identifier.weblink | https://ceur-ws.org/Vol-3680/S3Paper11.pdf | |
dc.language | en | |
dc.relation.ispartof | CEUR Workshop Proceedings | |
dc.relation.pages | 1-11 | |
dc.rights | CC-BY | |
dc.sciencecloud | send | |
dc.share.type | OPEN_JOURNAL | |
dc.subject.en | neural network | |
dc.subject.en | precision farming | |
dc.subject.en | image recognition | |
dc.subject.en | education | |
dc.subject.en | crop density | |
dc.subject.en | technological stress. | |
dc.title | Using Neural Networks to Identify Technological Stress Using the Example of Crop Compaction | |
dc.type | JournalArticleConference | |
dspace.entity.type | Publication |