Using Neural Networks to Identify Technological Stress Using the Example of Crop Compaction

cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcidd0f13f67-14d4-453a-9b21-2771d083450d
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.abstract.enThe article is devoted to the study of the use of neural networks to identify the technological stress of plantations in the technologies of precision agriculture. The study takes into account such complex aspects of sample selection as the speed of image acquisition, the effectiveness of assessing the state of crop compaction, etc. The use of neural networks makes it possible to automate and increase the accuracy of selection, to improve the quality of the analysis of plant stands, provided that the technology of evaluating soil samples is followed. The obtained results indicate the prospects of implementing this approach in modern agriculture.
dc.affiliationWydział Inżynierii Środowiska i Inżynierii Mechanicznej
dc.affiliation.instituteKatedra Inżynierii Biosystemów
dc.conferenceDigital Technologies in Education, Science and Industry 2023
dc.conference.countryKazakhstan
dc.conference.coverageinternational
dc.conference.datefinish2023-12-07
dc.conference.datestart2023-12-06
dc.conference.placeAlmaty
dc.conference.seriesDigital Technologies in Education, Science and Industry
dc.conference.seriesshortcutDTESI
dc.conference.seriesweblinkhttps://ceur-ws.org/
dc.conference.shortcutDTESI 2023
dc.conference.titleDigital Technologies in Education, Science and Industry 2023, DTESI 2023, Proceedings of the 8th International Conference, December 6-7, 2023, Almaty, Kazakhstan
dc.conference.weblinkhttps://ceur-ws.org/Vol-3680/
dc.contributor.authorKiktev, Nikolay
dc.contributor.authorDudnyk, Alla
dc.contributor.authorOpryshko, Oleksiy
dc.contributor.authorKomarchuk, Dmytro
dc.contributor.authorWitaszek, Kamil Krzysztof
dc.date.access2024-11-25
dc.date.accessioned2024-11-25T10:48:54Z
dc.date.available2024-11-25T10:48:54Z
dc.date.copyright2024-05-08
dc.date.issued2024
dc.description.accesstimeat_publication
dc.description.bibliographyil., bibliogr.
dc.description.financepublication_nocost
dc.description.financecost0,00
dc.description.points5
dc.description.versionfinal_published
dc.description.volume3680
dc.identifier.issn1613-0073
dc.identifier.urihttps://sciencerep.up.poznan.pl/handle/item/2067
dc.identifier.weblinkhttps://ceur-ws.org/Vol-3680/S3Paper11.pdf
dc.languageen
dc.relation.ispartofCEUR Workshop Proceedings
dc.relation.pages1-11
dc.rightsCC-BY
dc.sciencecloudsend
dc.share.typeOPEN_JOURNAL
dc.subject.enneural network
dc.subject.enprecision farming
dc.subject.enimage recognition
dc.subject.eneducation
dc.subject.encrop density
dc.subject.entechnological stress.
dc.titleUsing Neural Networks to Identify Technological Stress Using the Example of Crop Compaction
dc.typeJournalArticleConference
dspace.entity.typePublication