Energy Efficiency in Greenhouses and Comparison of Energy Sources Used for Heating

cris.virtual.author-orcid0000-0002-0340-3273
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid1ed1f464-ad28-4276-94f3-9b7597fe3851
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.abstract.enSustainability in greenhouse farming, one of the areas where the most energy is needed in the agricultural sector, can be achieved by increasing energy efficiency. Due to increasing energy costs in Türkiye and worldwide, increasing energy efficiency in greenhouses is seen as possible using renewable energy sources that do not produce waste instead of fossil energy sources. This study determined the heat-energy demand in the provinces of Türkiye with continental (Kırşehir and Kütahya) and Mediterranean (Antalya and Mersin) climates. For this purpose, the heat-energy requirement was calculated for greenhouse types with three different insulation properties (S-1: roof and side walls polyethylene, S-2: roof polyethylene, side walls polycarbonate, and S-3: roof polyethylene, side walls polycarbonate, and thermal curtain). Then, the amount and cost of fossil (coal, fuel oil, and natural gas) and renewable energy sources (geothermal and biogas) to be used in obtaining this energy, the heating cost for unit tomato yield, and the amount of carbon dioxide (CO2) released into the atmosphere were compared. According to the results obtained, the highest heat-energy requirement was 356.5 kWh m−2 year−1 in the S-1 greenhouse in the Kütahya province, and the lowest was 46.3 kWh m−2 year−1 in the S-3 greenhouse in the Mersin province. Depending on energy conservation, 6% of energy savings can be achieved in S-2 and 29% in S-3 compared to S-1. The highest heating cost for producing one kilogram of tomatoes was 0.70 USD kg−1 in fuel oil and Kütahya province (S-1). The lowest was calculated as 0.06 USD kg−1 in geothermally heated greenhouses in Kırşehir and Kütahya provinces (S-3). The highest CO2 to be released into the atmosphere with fuels was equal to 253.1 kg m−2 year−1 in coal fuel in Kütahya province (S-1). The lowest was calculated as 1.1 kg m−2 year−1 in geothermally heated greenhouses in Kırşehir and Kütahya provinces (S-3). The results of this research can be used to develop feasibility studies for greenhouse companies, greenhouse sector policies, policymakers, environmental protection, and taking precautions against the climate crisis.
dc.affiliationWydział Inżynierii Środowiska i Inżynierii Mechanicznej
dc.affiliation.instituteKatedra Melioracji, Kształtowania Środowiska i Gospodarki Przestrzennej
dc.contributor.authorBoyacı, Sedat
dc.contributor.authorKocięcka, Joanna
dc.contributor.authorJagosz, Barbara
dc.contributor.authorAtılgan, Atılgan
dc.date.access2025-04-24
dc.date.accessioned2025-04-24T09:42:45Z
dc.date.available2025-04-24T09:42:45Z
dc.date.copyright2025-02-05
dc.date.issued2025
dc.description.abstract<jats:p>Sustainability in greenhouse farming, one of the areas where the most energy is needed in the agricultural sector, can be achieved by increasing energy efficiency. Due to increasing energy costs in Türkiye and worldwide, increasing energy efficiency in greenhouses is seen as possible using renewable energy sources that do not produce waste instead of fossil energy sources. This study determined the heat-energy demand in the provinces of Türkiye with continental (Kırşehir and Kütahya) and Mediterranean (Antalya and Mersin) climates. For this purpose, the heat-energy requirement was calculated for greenhouse types with three different insulation properties (S-1: roof and side walls polyethylene, S-2: roof polyethylene, side walls polycarbonate, and S-3: roof polyethylene, side walls polycarbonate, and thermal curtain). Then, the amount and cost of fossil (coal, fuel oil, and natural gas) and renewable energy sources (geothermal and biogas) to be used in obtaining this energy, the heating cost for unit tomato yield, and the amount of carbon dioxide (CO2) released into the atmosphere were compared. According to the results obtained, the highest heat-energy requirement was 356.5 kWh m−2 year−1 in the S-1 greenhouse in the Kütahya province, and the lowest was 46.3 kWh m−2 year−1 in the S-3 greenhouse in the Mersin province. Depending on energy conservation, 6% of energy savings can be achieved in S-2 and 29% in S-3 compared to S-1. The highest heating cost for producing one kilogram of tomatoes was 0.70 USD kg−1 in fuel oil and Kütahya province (S-1). The lowest was calculated as 0.06 USD kg−1 in geothermally heated greenhouses in Kırşehir and Kütahya provinces (S-3). The highest CO2 to be released into the atmosphere with fuels was equal to 253.1 kg m−2 year−1 in coal fuel in Kütahya province (S-1). The lowest was calculated as 1.1 kg m−2 year−1 in geothermally heated greenhouses in Kırşehir and Kütahya provinces (S-3). The results of this research can be used to develop feasibility studies for greenhouse companies, greenhouse sector policies, policymakers, environmental protection, and taking precautions against the climate crisis.</jats:p>
dc.description.accesstimeat_publication
dc.description.bibliographyil., bibliogr.
dc.description.financepublication_nocost
dc.description.financecost0,00
dc.description.if3,0
dc.description.number3
dc.description.points140
dc.description.versionfinal_published
dc.description.volume18
dc.identifier.doi10.3390/en18030724
dc.identifier.issn1996-1073
dc.identifier.urihttps://sciencerep.up.poznan.pl/handle/item/2698
dc.identifier.weblinkhttps://www.mdpi.com/1996-1073/18/3/724
dc.languageen
dc.pbn.affiliationenvironmental engineering, mining and energy
dc.relation.ispartofEnergies
dc.relation.pagesart. 724
dc.rightsCC-BY
dc.sciencecloudnosend
dc.share.typeOPEN_JOURNAL
dc.subject.enheat requirement
dc.subject.engreenhouse heating
dc.subject.enfossil energy
dc.subject.engeothermal energy
dc.subject.enCO2 emissions
dc.subject.plzapotrzebowanie na ciepło
dc.subject.plogrzewanie szklarni
dc.subject.plenergia kopalna
dc.subject.plenergia geotermalna
dc.subject.plemisje CO2
dc.titleEnergy Efficiency in Greenhouses and Comparison of Energy Sources Used for Heating
dc.typeJournalArticle
dspace.entity.typePublication
oaire.citation.issue3
oaire.citation.volume18