Genotype-Trait (GT) Biplot Analysis for Yield and Quality Stability in Some Sweet Corn (Zea mays L. saccharata Sturt.) Genotypes
2023, Stansluos, Atom Atanasio Ladu, Öztürk, Ali, Niedbała, Gniewko, Türkoğlu, Aras, Haliloğlu, Kamil, Szulc, Piotr, Omrani, Ali, Wojciechowski, Tomasz, Piekutowska, Magdalena
A strong statistical method for investigating the correlations between traits, assessing genotypes based on numerous traits, and finding individuals who excel in particular traits is genotype–trait (GT) biplot analysis. The current study was applied to evaluate 11 sweet corn (Zea mays L. saccharata) genotypes and correlate them based on genotype–trait (GT) biplot analysis for two cropping seasons in Erzurum, Türkiye using the RCBD experimental design with three reputations. The results showed that the genotypes were significantly different for the majority of the examined variables according to the combined analysis of variance findings at 0.01 probability level. An ecological analysis was performed to evaluate sweet corn varieties and environmental conditions and interactions between them (genotype × environmental conditions). Our results showed that the summation of the first two and second main components was responsible for 73.51% of the combined cropping years of the sweet corn growth and development variance, demonstrating the biplot graph’s optimum relative validity, which was obtained. In this study, the Khan F1 (G6) genotype was found to be the stablest genotype, and the Kompozit Seker (G7) genotype was the non-stable genotype, moreover based on the first cropping year, second cropping year, and the average mean of the two cropping years. As a conclusion, the Khan F1 (G6) genotype is the highest-yielding genotype, and the Kompozit Seker (G7) is the lowest. Based on the heat map dendrogram, the context of the differential extent of trait association of all genotypes into two clusters is indicated. The highest genetic distance was shown between the BATEM Tatlı (G3) and Febris (G5) genotypes. Our results provide helpful information about the sweet corn genotypes and environments for future breeding programs.
Modeling Callus Induction and Regeneration in Hypocotyl Explant of Fodder Pea (Pisum sativum var. arvense L.) Using Machine Learning Algorithm Method
2023, Türkoğlu, Aras, Bolouri, Parisa, Haliloğlu, Kamil, Eren, Barış, Demirel, Fatih, Işık, Muhammet İslam, Piekutowska, Magdalena, Wojciechowski, Tomasz, Niedbała, Gniewko
A comprehensive understanding of genetic diversity and the categorization of germplasm is important to effectively identify appropriate parental candidates for the goal of breeding. It is necessary to have a technique of tissue culture that is both effective and reproducible to perform genetic engineering on fodder pea genotypes (Pisum sativum var. arvense L.). In this investigation, the genetic diversity of forty-two fodder pea genotypes was assessed based on their ability of callus induction (CI), the percentage of embryogenic callus by explant number (ECNEP), the percentage of responding embryogenic calluses by explant number (RECNEP), the number of somatic embryogenesis (NSE), the number of responding somatic embryogenesis (RSE), the regeneration efficiency (RE), and the number of regenerated plantlets (NRP). The findings of the ANOVA showed that there were significant differences (p < 0.001) between the genotypes for all in vitro parameters. The method of principal component analysis (PCA) was used to study the correlations that exist between the factors associated with tissue culture. While RE and NRP variables were most strongly associated with Doğruyol, Ovaçevirme-4, Doşeli-1, Yolgeçmez, and Incili-3 genotypes, RECNEP, NSE, RDE, and RECNEP variables were strongly associated with Avcılar, Ovaçevirme-3, and Ardahan Merkez-2 genotypes. The in vitro process is a complex multivariate process and more robust analyses are needed for linear and nonlinear parameters. Within the scope of this study, artificial neural network (ANN), random forest (RF), and multivariate adaptive regression spline (MARS) algorithms were used for RE estimation, and these algorithms were also compared. The results that we acquired from our research led us to the conclusion that the employed ANN-multilayer perceptron (ANN-MLP) model (R2 = 0.941) performs better than the RF model (R2 = 0.754) and the MARS model (R2 = 0.214). Despite this, it has been shown that the RF model is capable of accurately predicting RE in the early stages of the in vitro process. The current work is an inquiry regarding the use of RF, MARS, and ANN models in plant tissue culture, and it indicates the possibilities of application in a variety of economically important fodder peas.
Insights into Drought Tolerance of Tetraploid Wheat Genotypes in the Germination Stage Using Machine Learning Algorithms
2024, Benlioğlu, Berk, Demirel, Fatih, Türkoğlu, Aras, Haliloğlu, Kamil, Özaktan, Hamdi, Kujawa, Sebastian, Piekutowska, Magdalena, Wojciechowski, Tomasz, Niedbała, Gniewko
Throughout germination, which represents the initial and crucial phase of the wheat life cycle, the plant is notably susceptible to the adverse effects of drought. The identification and selection of genotypes exhibiting heightened drought tolerance stand as pivotal strategies aimed at mitigating these effects. For the stated objective, this study sought to evaluate the responses of distinct wheat genotypes to diverse levels of drought stress encountered during the germination stage. The induction of drought stress was achieved using polyethylene glycol at varying concentrations, and the assessment was conducted through the application of multivariate analysis and machine learning algorithms. Statistical significance (p < 0.01) was observed in the differences among genotypes, stress levels, and their interaction. The ranking of genotypes based on tolerance indicators was evident through a principal component analysis and biplot graphs utilizing germination traits and stress tolerance indices. The drought responses of wheat genotypes were modeled using germination data. Predictions were then generated using four distinct machine learning techniques. An evaluation based on R-square, mean square error, and mean absolute deviation metrics indicated the superior performance of the elastic-net model in estimating germination speed, germination power, and water absorption capacity. Additionally, in assessing the criterion metrics, it was determined that the Gaussian processes classifier exhibited a better performance in estimating root length, while the extreme gradient boosting model demonstrated superior performance in estimating shoot length, fresh weight, and dry weight. The study’s findings underscore that drought tolerance, susceptibility levels, and parameter estimation for durum wheat and similar plants can be reliably and efficiently determined through the applied methods and analyses, offering a fast and cost-effective approach.
Genetic Diversity and Population Structure in Bread Wheat Germplasm from Türkiye Using iPBS-Retrotransposons-Based Markers
2023, Haliloğlu, Kamil, Türkoğlu, Aras, Öztürk, Ali, Niedbała, Gniewko, Niazian, Mohsen, Wojciechowski, Tomasz, Piekutowska, Magdalena
This study investigated the genetic diversity and population structure of 63 genotypes from Turkish bread wheat germplasm using iPBS-retrotransposons primers. The thirty-four iPBS primers produced a total of 1231 polymorphic bands, ranging from 8 (iPBS-2375) to 60 (iPBS-2381) alleles per marker, with an average number of 36.00 alleles. The polymorphism information content (PIC) per marker varied between 0.048 (iPBS 2087) and 0.303 (iPBS 2382), with an average of 0.175. The numbers of effective alleles (ne), genetic diversity of Nei (h), and Shannon’s information index (I) value were calculated as 1.157, 0.95, and 0.144, respectively. The greatest genetic distance (0.164) was between Eastern Anatolia Agricultural Research Institute genotypes and Çukurova Agricultural Research Institute genotypes. The unweighted pair-group method with arithmetic mean (UPGMA) dendrogram placed the 63 wheat genotypes into three clusters. The percentage of genetic diversity explained by each of the three main coordinates of the basic coordinate analysis was determined to be 44.58, 12.08, and 3.44, respectively. AMOVA (Analysis of Molecular Variance) showed that the variation within populations was 99% and that between populations was 1%. The result of genetic structure analysis suggests that the greatest value of K was calculated as 3. The F-statistic (Fst) value was determined as 0.4005, 0.2374, and 0.3773 in the first to third subpopulations, respectively. Likewise, the expected heterozygosity values (He) were determined as 0.2203, 0.2599, and 0.2155 in the first, second, and third subpopulations, respectively. According to the information obtained in the study, the most genetically distant genotypes were the G1 (Aksel 2000) and G63 (Karasu 90) genotypes. This study provided a deep insight into genetic variations in Turkish bread wheat germplasm using the iPBS-retrotransposons marker system.
GT Biplot and Cluster Analysis of Barley (Hordeum vulgare L.) Germplasm from Various Geographical Regions Based on Agro-Morphological Traits
2024, Güngör, Hüseyin, Türkoğlu, Aras, Çakır, Mehmet Fatih, Dumlupınar, Ziya, Piekutowska, Magdalena, Wojciechowski, Tomasz, Niedbała, Gniewko
Barley, an ancient crop, was vital for early civilizations and has historically been served as food and beverage. Today, it plays a major role as feed for livestock. Breeding modern barley varieties for high yield and quality has created significant genetic erosion. This highlights the importance of tapping into genetic and genomic resources to develop new improved varieties that can overcome agricultural bottlenecks and increase barley yield. In the current study, 75 barley genotypes were evaluated for agro-morphological traits. The relationships among these traits were determined based on genotype by trait (GT) biplot analysis for two cropping years (2021 and 2022). This study was designed as a randomized complete block experiment with four replications. The variation among genotypes was found to be significant for all traits. The correlation coefficient and GT biplot revealed that grain yield (GY) was positively correlated with the number of grains per spike (NGS), the grain weight per spike (GW), and the thousand kernel weight (1000 KW). However, the test weight (TW) was negatively correlated with the heading date (HD). Hierarchical analysis produced five groups in the first year, four groups in the second year, and four groups over the average of two years. Genotypes by trait biplot analysis highlighted G25, G28, G61, G73, and G74 as promising high-yielding barley genotypes. This study demonstrated the effectiveness of the GT biplot as a valuable approach for identifying superior genotypes with contrasting traits. It is considered that this approach could be used to evaluate the barley genetic material in breeding programs.