Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Neural Modelling from the Perspective of Selected Statistical Methods on Examples of Agricultural Applications

2023, Boniecki, Piotr, Sujak, Agnieszka, Niedbała, Gniewko, Piekarska-Boniecka, Hanna, Wawrzyniak, Agnieszka, Przybylak, Andrzej Mieczysław

Modelling plays an important role in identifying and solving problems that arise in a number of scientific issues including agriculture. Research in the natural environment is often costly, labour demanding, and, in some cases, impossible to carry out. Hence, there is a need to create and use specific “substitutes” for originals, known in a broad sense as models. Owing to the dynamic development of computer techniques, simulation models, in the form of information technology (IT) systems that support cognitive processes (of various types), are acquiring significant importance. Models primarily serve to provide a better understanding of studied empirical systems, and for efficient design of new systems as well as their rapid (and also inexpensive) improvement. Empirical mathematical models that are based on artificial neural networks and mathematical statistical methods have many similarities. In practice, scientific methodologies all use different terminology, which is mainly due to historical factors. Unfortunately, this distorts an overview of their mutual correlations, and therefore, fundamentally hinders an adequate comparative analysis of the methods. Using neural modelling terminology, statisticians are primarily concerned with the process of generalisation that involves analysing previously acquired noisy empirical data. Indeed, the objects of analyses, whether statistical or neural, are generally the results of experiments that, by their nature, are subject to various types of errors, including measurement errors. In this overview, we identify and highlight areas of correlation and interfacing between several selected neural network models and relevant, commonly used statistical methods that are frequently applied in agriculture. Examples are provided on the assessment of the quality of plant and animal production, pest risks, and the quality of agricultural environments.

No Thumbnail Available
Publication

Predicting Starch Content in Early Potato Varieties Using Neural Networks and Regression Models: A Comparative Study

2024, Piekutowska, Magdalena, Hara, Patryk, Pentoś, Katarzyna, Lenartowicz, Tomasz, Wojciechowski, Tomasz, Kujawa, Sebastian, Niedbała, Gniewko

Starch content serves as a crucial indicator of the quality and palatability of potato tubers. It has become a common practice to evaluate the polysaccharide content directly in tubers freshly harvested from the field. This study aims to develop models that can predict starch content prior to the harvesting of potato tubers. Very early potato varieties were cultivated in the northern and northwestern regions of Poland. The research involved constructing multiple linear regression (MLR) and artificial neural network (ANN-MLP) models, drawing on data from eight years of field trials. The independent variables included factors such as sunshine duration, average daily air temperatures, precipitation, soil nutrient levels, and phytophenological data. The NSM demonstrated a higher accuracy in predicting the dependent variable compared to the RSM, with MAPE errors of 7.258% and 9.825%, respectively. This study confirms that artificial neural networks are an effective tool for predicting starch content in very early potato varieties, making them valuable for monitoring potato quality.

No Thumbnail Available
Publication

Prediction of Protein Content in Pea (Pisum sativum L.) Seeds Using Artificial Neural Networks

2023, Hara, Patryk, Piekutowska, Magdalena, Niedbała, Gniewko

Pea (Pisum sativum L.) is a legume valued mainly for its high seed protein content. The protein content of pea is characterized by a high lysine content and low allergenicity. This has made consumers appreciate peas increasingly in recent years, not only for their taste, but also for their nutritional value. An important element of pea cultivation is the ability to predict protein content, even before harvest. The aim of this research was to develop a linear and a non-linear model for predicting the percentage of protein content in pea seeds and to perform a comparative analysis of the effectiveness of these models. The analysis also focused on identifying the variables with the greatest impact on protein content. The research included the method of machine learning (artificial neural networks) and multiple linear regression (MLR). The input parameters of the models were weather, agronomic and phytophenological data from 2016–2020. The predictive properties of the models were verified using six ex-post forecast measures. The neural model (N1) outperformed the multiple regression (RS) model. The N1 model had an RMS error magnitude of 0.838, while the RS model obtained an average error value of 2.696. The MAPE error for the N1 and RS models was 2.721 and 8.852, respectively. The sensitivity analysis performed for the best neural network showed that the independent variables most influencing the protein content of pea seeds were the soil abundance of magnesium, potassium and phosphorus. The results presented in this work can be useful for the study of pea crop management. In addition, they can help preserve the country’s protein security.