Antimicrobial Activities Evaluation and Phytochemical Screening of Some Selected Plant Materials Used in Traditional Medicine
Type
Journal article
Language
English
Date issued
2023
Faculty
Wydział Leśny i Technologii Drewna
Wydział Nauk o Żywności i Żywieniu
Wydział Rolnictwa, Ogrodnictwa i Biotechnologii
PBN discipline
agriculture and horticulture
Journal
Molecules
ISSN
1420-3049
Web address
Volume
28
Number
1
Pages from-to
art. 244
Abstract (EN)
Plant extracts are a source of valuable ingredients that can be used in many industries. This paper presents research on the content of selected bioactive compounds in extracts obtained from various plant materials. Raw materials have a documented use in traditional medicine not only in Poland. The tested plants were: bitter melon (fruit), elderberry (flowers, fruit, leaves), wild rose (fruit, flesh, seeds), mountain ash (fruit), guelder rose (fruit), and sea buckthorn (fruit, leaves, pomace). The main goal of these tests is to indicate the potential raw materials that may constitute an alternative source of bioactive compounds with antimicrobial activity. The plant material was tested for the content of bioactive antioxidant compounds and possible antimicrobial activity. The content of polyphenols (phenolic acids and flavonoids) was analyzed using UPLC/PDA, sterols, organic acids, and other bioactive compounds. The minimum inhibitory concentration (MIC) was determined. The total free phenolic acids (TPC) and total free flavonoids (TFC) of all plant raw materials was varied and ranged from 0.21 (mg RUTE/1 g of extract) to 38.30 mg RUTE/1 g of extract) for TFC. The concentration of sterols was, on average, about 10 mg/1 g of extract. The value of approx. 20 mg/1 g of the extract was recorded for bitter melon and beach rose. The content of organic acids was about 1.5 mg/1 g of the extract to even 13 mg/1 g of the extract for sea buckthorn berries. The most sensitive to the extracts’ activity were the following bacteria: M. luteus, P. mirabilis, P. fragii, S. enteritidis, and E. coli. The tested plant materials can be used in various industries as a source of bioactive compounds of an antibacterial nature.
License
CC-BY - Attribution
Open access date
December 28, 2022