Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Development and application of a model for the automatic evaluation and classification of onions (Allium cepa L.) using a Deep Neural Network (DNN)
 
Full item page
Options

Development and application of a model for the automatic evaluation and classification of onions (Allium cepa L.) using a Deep Neural Network (DNN)

Type
Journal article
Language
English
Date issued
2024
Author
Rybacki, Piotr 
Przygodziński, Przemysław
Kowalczewski, Przemysław Łukasz 
Sawinska, Zuzanna 
Kowalik, Ireneusz 
Osuch, Andrzej 
Osuch, Ewa 
Faculty
Wydział Rolnictwa, Ogrodnictwa i Biotechnologii
Wydział Nauk o Żywności i Żywieniu
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
Journal
Acta Scientiarum Polonorum, Hortorum Cultus
ISSN
1644-0692
DOI
10.24326/asphc.2024.5337
Web address
https://czasopisma.up.lublin.pl/asphc/article/view/5337
Volume
23
Number
5
Pages from-to
37-55
Abstract (EN)
Evaluating onions for size, shape, damage, colour and discolouration is the first and most important step in classifying them for raw material quality, processing and the horticultural and agri-food sectors. Current methods of geometric evaluation and grading of onions involve mechanical and extremely invasive sorting, which causes additional damage, reduces the quality of the raw material and is also labour and time-consuming. As a result, non-invasive evaluation and classification methods that are both fast and accurate are being sought. One such method is digital image analysis, which, when combined with instrumentation and deep neural networks, can fully automate the process. The main aim of this study was the development of a model for the automatic evaluation and classification of onions using a deep convolutional neural network (CNN) model. A fixed-architecture network was built, for which a computational algorithm was developed in Python 3.9 and published at https://github.com/piotrrybacki/onion-CNN.git (accessed on 4 October 2024). The Hyduro F1 onion variety, a hybrid all-purpose variety of the Rijnsburger type, was used to build, teach and test the model. The developed algorithm classified the onion images qualitatively with an accuracy of 91.85%. This classification was based on the geometric parameters of the onion, i.e. diameter, height, transversal and longitudinal circumference, and the estimated area of damage or discolouration of the skin. The root mean square error (MSE) in RGB space varied between 87.99 and 91.24, and the maximum image classification time was 28.98 ms/image. The developed algorithm has a very high utility, as it automates the classification process, reducing its time and labour intensity.
Keywords (EN)
  • automatic evaluation

  • convolutional neural network

  • digital image analysis

  • onion quality

  • machine learning

License
cc-bycc-by CC-BY - Attribution
Open access date
November 19, 2024
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia