Development and application of a model for the automatic evaluation and classification of onions (Allium cepa L.) using a Deep Neural Network (DNN)

cris.virtual.author-orcid0000-0001-7223-6491
cris.virtual.author-orcid0000-0002-0153-4624
cris.virtual.author-orcid0000-0002-7030-3221
cris.virtual.author-orcid0000-0003-1011-2551
cris.virtual.author-orcid0000-0001-5616-5697
cris.virtual.author-orcid0000-0002-3412-180X
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid110d6c25-5395-4f20-b8e7-5e160c853b52
cris.virtualsource.author-orcid4ddc81ce-066b-4d2e-a9f3-015a6c34a525
cris.virtualsource.author-orcidc958793f-eed3-43f8-afcc-10e1aa232f24
cris.virtualsource.author-orcid79a3a1b4-e2cc-4896-9afa-85fbbb4824d1
cris.virtualsource.author-orcid786b69fe-001f-4f73-9560-6e7d2061db38
cris.virtualsource.author-orcid20d45583-0f3d-4625-895d-d154e808c225
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.abstract.enEvaluating onions for size, shape, damage, colour and discolouration is the first and most important step in classifying them for raw material quality, processing and the horticultural and agri-food sectors. Current methods of geometric evaluation and grading of onions involve mechanical and extremely invasive sorting, which causes additional damage, reduces the quality of the raw material and is also labour and time-consuming. As a result, non-invasive evaluation and classification methods that are both fast and accurate are being sought. One such method is digital image analysis, which, when combined with instrumentation and deep neural networks, can fully automate the process. The main aim of this study was the development of a model for the automatic evaluation and classification of onions using a deep convolutional neural network (CNN) model. A fixed-architecture network was built, for which a computational algorithm was developed in Python 3.9 and published at https://github.com/piotrrybacki/onion-CNN.git (accessed on 4 October 2024). The Hyduro F1 onion variety, a hybrid all-purpose variety of the Rijnsburger type, was used to build, teach and test the model. The developed algorithm classified the onion images qualitatively with an accuracy of 91.85%. This classification was based on the geometric parameters of the onion, i.e. diameter, height, transversal and longitudinal circumference, and the estimated area of damage or discolouration of the skin. The root mean square error (MSE) in RGB space varied between 87.99 and 91.24, and the maximum image classification time was 28.98 ms/image. The developed algorithm has a very high utility, as it automates the classification process, reducing its time and labour intensity.
dc.affiliationWydział Rolnictwa, Ogrodnictwa i Biotechnologii
dc.affiliationWydział Nauk o Żywności i Żywieniu
dc.affiliationWydział Inżynierii Środowiska i Inżynierii Mechanicznej
dc.affiliation.instituteKatedra Agronomii
dc.affiliation.instituteKatedra Technologii Żywności Pochodzenia Roślinnego
dc.affiliation.instituteKatedra Inżynierii Biosystemów
dc.contributor.authorRybacki, Piotr
dc.contributor.authorPrzygodziński, Przemysław
dc.contributor.authorKowalczewski, Przemysław Łukasz
dc.contributor.authorSawinska, Zuzanna
dc.contributor.authorKowalik, Ireneusz
dc.contributor.authorOsuch, Andrzej
dc.contributor.authorOsuch, Ewa
dc.date.access2024-11-30
dc.date.accessioned2024-11-25T08:50:30Z
dc.date.available2024-11-25T08:50:30Z
dc.date.copyright2024-11-19
dc.date.issued2024
dc.description.accesstimeat_publication
dc.description.bibliographyil., bibliogr.
dc.description.financepublication_nocost
dc.description.financecost0,00
dc.description.if0,6
dc.description.number5
dc.description.points100
dc.description.reviewreview
dc.description.versionfinal_published
dc.description.volume23
dc.identifier.doi10.24326/asphc.2024.5337
dc.identifier.eissn2545-1405
dc.identifier.issn1644-0692
dc.identifier.urihttps://sciencerep.up.poznan.pl/handle/item/2065
dc.identifier.weblinkhttps://czasopisma.up.lublin.pl/asphc/article/view/5337
dc.languageen
dc.relation.ispartofActa Scientiarum Polonorum, Hortorum Cultus
dc.relation.pages37-55
dc.rightsCC-BY
dc.sciencecloudsend
dc.share.typeOPEN_JOURNAL
dc.subject.enautomatic evaluation
dc.subject.enconvolutional neural network
dc.subject.endigital image analysis
dc.subject.enonion quality
dc.subject.enmachine learning
dc.titleDevelopment and application of a model for the automatic evaluation and classification of onions (Allium cepa L.) using a Deep Neural Network (DNN)
dc.typeJournalArticle
dspace.entity.typePublication