Badania nad zwiększeniem odporności żyta na sporysz i fuzariozę kłosów przez poznanie interakcji pasożyt-żywiciel-środowisko z wykorzystaniem źródeł odporności na Claviceps purpurea i grzyby rodzaju Fusarium
The influence of active metabolites from the decomposition of camelina and barley straw on the development of phytoplankton from eutrophic freshwater ecosystem
2025, Świerk, Dariusz Andrzej, Celewicz, Sofia, Krzyżaniak, Michał, Antoszewski, Patryk, Stuper-Szablewska, Kinga, Szablewski, Tomasz, Kurasiak-Popowska, Danuta, Kosiada, Tomasz, Stoyneva-Gärtner, Maya, Krawiec, Szymon
Transcriptomic Characterization of Candidate Genes for Fusarium Resistance in Maize (Zea mays L.)
2025, Sobiech, Aleksandra, Tomkowiak, Agnieszka, Jamruszka, Tomasz, Kosiada, Tomasz, Spychała, Julia, Lenort, Maciej, Bocianowski, Jan
Fusarium diseases are among the most dangerous fungal diseases of plants. To date, there are no plant protectants that completely prevent fusariosis. Current breeding trends are therefore focused on increasing genetic resistance. While global modern maize breeding relies on various molecular genetics techniques, they are useless without a precise characterization of genomic regions that determine plant physiological responses to fungi. The aim of this study was thus to characterize the expression of candidate genes that were previously reported by our team as harboring markers linked to fusarium resistance in maize. The plant material included one susceptible and four resistant varieties. Biotic stress was induced in adult plants by inoculation with fungal spores under controlled conditions. qRT-PCR was performed. The analysis focused on four genes that encode for GDSL esterase/lipase (LOC100273960), putrescine hydroxycinnamyltransferase (LOC103649226), peroxidase 72 (LOC100282124), and uncharacterized protein (LOC100501166). Their expression showed differences between analyzed time points and varieties, peaking at 6 hpi. The resistant varieties consistently showed higher levels of expression compared to the susceptible variety, indicating their stronger defense responses. Moreover, to better understand the function of these genes, their expression in various organs and tissues was also evaluated using publicly available transcriptomic data. Our results are consistent with literature reports that clearly indicate the involvement of these genes in the resistance response to fusarium. Thus, they further emphasize the high usefulness of the previously selected markers in breeding programs to select fusarium-resistant maize genotypes.
Analysis of miRNA expression associated with gene Lr34 responsible for resistance mechanisms to wheat leaf rust
2023, Tomkowiak, Agnieszka, Bobrowska, Roksana, Kwiatek, Michał Tomasz, Spychala, Julia, Kuczynski, Jakub, Tyczewska, Agata, Kowalczewski, Przemysław, Weigt, Dorota, Kosiada, Tomasz
Badania nad zwiększeniem odporności żyta na sporysz i na fuzariozę kłosów przez poznanie interakcji pasożyt - żywiciel - środowisko z wykorzystaniem genetycznych źródeł odporności na Claviceps purpurea i grzyby rodzaju Fusarium
Enhancing Lettuce Drought Tolerance: The Role of Organic Acids in Photosynthesis and Oxidative Defense
2024, Kleiber, Tomasz, Chadzinikolau, Tamara, Formela-Luboińska, Magda, Lartey, Jeffrey Larte, Kosiada, Tomasz
The aim of this study was to investigate the effects of maleic acid (MA), salicylic acid (SA), and citric acid (CA) on alleviating the drought stress of a lettuce (Lactuca sativa L.) hydroponic culture. The effect of these organic acids was tested under stress conditions induced by polyethene glycol (PEG 6000) at 5% and 7.5% concentrations. Drought stress reduced the fresh and dry matter yields of plants. The acid treatment caused increasing tendencies in the fresh weight yield:control (SA, MA), PEG 7.5% (SA, MA, CA)) and dry weight yield (control (SA, MA), PEG 5% (MA), PEG 7.5% (SA, MA)). The acid treatment also enhanced the nutrient uptake of stressed plants: SA: N (PEG 7.5%), K (PEG 5 and 7.5%); MA: N, P, K, Ca (PEG 5 and 7.5%). This work found that chlorophyll a and b amounts did not change under applied experimental conditions. Most parameters of chlorophyll fluorescence did not depend on either the level of applied water stress (PEG level) or the type of spraying. Drought stress increased leaf superoxide anion (O2•−) and malondialdehyde (MDA) levels but decreased H2O2. Proline (Pro) and phenolic compounds (TFC), including flavonols (Fla), accumulated more in stressed plants. Drought stress also affected the chlorophyll fluorescence. Our results suggest that acids can improve plant tolerance to drought stress by boosting the antioxidant defence system and reducing the oxidative damage caused by reactive oxygen species.