Now showing 1 - 20 of 31
No Thumbnail Available
Publication

The influence of Hermetia illucens L. frass on the health, stress, and development of barley

2024, Grzanka, Monika, Sobiech, Łukasz, Radzikowska-Kujawska, Dominika, Sawinska, Zuzanna, Kowalczewski, Przemysław Łukasz, Świtek, Stanisław, Skrzypczak, Grzegorz Antoni, Kardasz, Przemysław

Barley cultivation faces challenges from changing climate conditions, including the increasing threat of drought. This study explored the potential of a fertilizer derived from Hermetia illucens L. frass to enhance the development and health of spring barley under optimal and drought conditions. The experiment, conducted in a controlled greenhouse environment, employed various fertilization treatments, including cattle manure and two doses of H. illucens L. frass-based fertilizer. Comprehensive assessments were made through visual observations and physiological measurements, including chlorophyll fluorescence, leaf gas exchange, and CO2 exchange between the soil and the atmosphere. The results demonstrated that the application of H. illucens L. frass-based fertilizer significantly improved barley vigor and health compared to the control and cattle manure treatments, especially under drought stress. Physiological measurements revealed positive effects on chlorophyll fluorescence parameters, indicating enhanced photosynthetic efficiency. Leaf gas exchange parameters also reflected improved photosynthetic activity, with the H. illucens L. frass-treated plants outperforming others. This study provides valuable insights into the potential of insect-derived fertilizers, particularly H. illucens L. frass, as a sustainable and effective way to enhance crop resilience to drought. As climate change continues to pose challenges to agriculture, incorporating such novel fertilizers may offer a promising avenue for sustainable crop production.

No Thumbnail Available
Publication

The Rheology, Texture, and Molecular Dynamics of Plant-Based Hot Dogs

2024, Kowalczewski, Przemysław Łukasz, Smarzyński, Krzysztof, Lewandowicz, Jacek, Jeżowski, Paweł, Ruszkowska, Millena, Wróbel, Martyna Maria, Kubiak, Piotr, Kačániová, Miroslava, Baranowska, Hanna Maria

The rising demand for plant-based alternatives to traditional meat products has led to the development of plant-based sausages (PBSs) that closely mimic the texture and taste of their meat counterparts. This study investigates the rheological and textural properties, as well as proton molecular dynamics, of hot dog-type PBSs and batters used in their production. Various formulations were analyzed to understand how different ingredients and processing methods affect the characteristics of the final products. Our findings reveal that the incorporation of specific plant proteins and hydrocolloids significantly influences the rheological behavior and texture profile of sausages. The hardness of the samples ranged from 4.33 to 5.09 N/mm and was generally higher for the products with inorganic iron sources. Regarding the viscoelastic properties, all the samples showed larger values of the storage modulus than the loss modulus, which indicates their solid-like behavior. Additionally, the study utilized advanced proton nuclear magnetic resonance (NMR) techniques to elucidate the molecular dynamics within plant-based matrices, providing insights into water distribution and mobility. Key findings highlight the impact of different plant proteins and additives on the texture and stability of sausage analogs.

No Thumbnail Available
Publication

Effects of biopreparations based on Bacillus and Trichoderma, combined with mineral and organic fertilization and a Pisum sativum L. forecrop on improving the tolerance of Maize plants to drought stress

2025, Radzikowska-Kujawska, Dominika, Piechpta, Tomasz, Jarzyniak, Karolina Maria, Kowalczewski, Przemysław

The increased frequency of extreme weather phenomena, such as heat waves and drought, adversely affects the condition of plants. The need to strive for more sustainable methods of growing plants requires undertaking researches that focus on strengthening the immunity of plants using methods that have a positive impact on both crops and the natural environment. The aim of the study was to assess the effectiveness and compare the effects of selected microbiological preparations based on Bacillus bacteria and Trichoderma symbiotic fungi, combined with mineral (NPK) and organic fertilization (manure) and a Pisum sativum L. forecrop on improving the tolerance of maize plants to drought stress. The pot experiment was carried in 2023 as a two-factor experiment in three replicates. Physiological parameters were assessed based on measurements of photosynthetic efficiency (A - CO2 assimilation rate, E - Transpiration Rate, Gs – Stomatal Conductance) and chlorophyll content (CCI) and fluorescence (F0 - initial fluorescence, Fm - maximum fluorescence, Fv/Fm - maximum photochemical efficiency of PSII, Yield - quantum yield of the photochemical reaction in PSII, ETR – electron transport rate, NPQ - Non - Photo-chemical Quenching), as well as soil respiration (NCER- Net CO2 Exchange Rate, W flux- Net H2O Exchange Rate, Ce- Soil Respiration) and biometric measurements (dry mass of shoots and roots).The measurement of photosynthesis efficiency under drought stress clearly indicated the highest, significant effect caused by Trichoderma preparation with both fertilizers. In the control, CO2 assimilation was practically inhibited due to drought (98% drop), while in the plants in which the Trichoderma preparation was used together with half dose of NPK and manure, there was only a slight decrease (1% and 13% respectively). A greatest, significant improvement in the DM of roots under drought was noted in plants in which the Pisum forecrop was applied together with NPK and manure (230% and 168% respectively). Pisum forecrop and treatments with microbiological preparation containing Trichoderma, make it possible to reduce the fertilization dose by at least half. This is particularly important in view of the global trend of increasing drought stress and efforts to improve soil quality.

No Thumbnail Available
Publication

Exploring galactagogue use among breastfeeding women: Insights from an observational study

2024, Garbacz, Agnieszka, Juszczak, Paweł, Nowicki, Marcin, Kowalczewski, Przemysław Łukasz, Człapka-Matyasik, Magdalena

Breastfeeding is the optimal form of infant nutrition and remains a critical topic of discussion. In the case of lactation problems, women can be assisted by plant galactagogues designed to induce, sustain, and increase lactation. Reports on the popularity, awareness and knowledge of galactagogues are limited. Therefore, this study aimed to analyze the use of galactagogues in the diet among breastfeeding women. The online survey was conducted using anonymized questionnaires, with results collected in the Spring of 2021. Fifty-two women aged 20 to 50 who fed naturally participated in the study, with 69% of respondents being familiar with galactagogues and 42% having used them. The most often indicated herbs were fennel (68%) and anise (45%). Galactagogues were used as ready-to-use herbal lactation mixes (73%). Women found them effective in stimulating lactation (82%) and purchased them in pharmacies (64%) or herbal stores (36%). Respondents were encouraged to use galactagogues by media (32%) and family and friends (45%). Women reported that greater knowledge (57%) would be essential to effectively encourage galactagogues. Breastfeeding women were positive about using plant-based galactagogues and considered them effective. A critical barrier identified by those not using galactagogues was their need for knowledge. The information campaign for pregnant women should include galactagogues as lactation-stimulating herbs.

No Thumbnail Available
Publication

Efficiency of Identification of Blackcurrant Powders Using Classifier Ensembles

2024, Przybył, Krzysztof, Walkowiak, Katarzyna, Kowalczewski, Przemysław Łukasz

In the modern times of technological development, it is important to select adequate methods to support various food and industrial problems, including innovative techniques with the help of artificial intelligence (AI). Effective analysis and the speed of algorithm implementation are key points in assessing the quality of food products. Non-invasive solutions are being sought to achieve high accuracy in the classification and evaluation of various food products. This paper presents various machine learning algorithm architectures to evaluate the efficiency of identifying blackcurrant powders (i.e., blackcurrant concentrate with a density of 67 °Brix and a color coefficient of 2.352 (E520/E420) in combination with the selected carrier) based on information encoded in microscopic images acquired via scanning electron microscopy (SEM). Recognition of blackcurrant powders was performed using texture feature extraction from images aided by the gray-level co-occurrence matrix (GLCM). It was evaluated for quality using individual single classifiers and a metaclassifier based on metrics such as accuracy, precision, recall, and F1-score. The research showed that the metaclassifier, as well as a single random forest (RF) classifier most effectively identified blackcurrant powders based on image texture features. This indicates that ensembles of classifiers in machine learning is an alternative approach to demonstrate better performance than the existing traditional solutions with single neural models. In the future, such solutions could be an important tool to support the assessment of the quality of food products in real time. Moreover, ensembles of classifiers can be used for faster analysis to determine the selection of an adequate machine learning algorithm for a given problem.

No Thumbnail Available
Publication

Characterization of Selected Microalgae Species as Potential Sources of Nutrients and Antioxidants

2024, Čmiková, Natália, Kowalczewski, Przemysław Łukasz, Kmiecik, Dominik, Tomczak, Aneta, Drożdżyńska, Agnieszka, Ślachciński, Mariusz, Królak, Jakub, Kačániová, Miroslava

Microalgae are exceptional organisms from a nutritional perspective, boasting an array of bioactive compounds that have long justified their incorporation into human diets. In this study, we explored the potential of five microalgae species: Nannochloropsis sp., Tetraselmis chuii, Chaetoceros muelleri, Thalassiosira weissflogii, and Tisochrysis lutea. We conducted comprehensive analyses of their nutritional profiles, encompassing protein content, individual amino acid composition, mineral and trace element levels, fatty acid profiles (including saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs)), polyphenol compositions, and vitamin B content. The antioxidant activity of the ethanolic extracts was evaluated using two methods: ABTS and DPPH radical scavenging assay. The total protein content of the microalgae ranged from 34.09 ± 0.39% to 42.45 ± 0.18%, with the highest concentration observed in T. weissflogii. Essential amino acids such as histidine, threonine, lysine, valine, isoleucine, leucine, phenylalanine, and methionine were present in concentrations ranging from 0.53 ± 0.02 to 12.55 ± 2.21 g/16 g N. Glutamic acid emerged as the most abundant amino acid, with concentrations ranging from 6.73 ± 0.82 to 12.55 ± 2.21 g/16 g N. Among the microalgae species, T. chuii exhibited the highest concentrations of calcium (Ca) and manganese (Mn), while C. muelleri showed prominence in magnesium (Mg), sodium (Na), and iron (Fe). T. weissflogii stood out for its potassium (K) content, and T. lutea contained notable amounts of copper (Cu), zinc (Zn), and lead (Pb). Regarding fatty acid profiles, Nannochloropsis sp. and T. chuii were predominantly composed of SFA, while C. muelleri and T. weissflogii were rich in MUFA. PUFAs dominated the fatty acid profile of T. lutea, which also exhibited the most diverse range of polyphenolic substances. We also analyzed the B vitamin content, with T. lutea displaying the highest concentrations of niacin (B3) and riboflavin (B2). Antioxidant activity was confirmed for all microalgae tested using DPPH and ABTS radical IC50 (mg/mL) converted to Trolox equivalent (TEAC). These findings underscore the substantial potential of the examined microalgae species as sources of biologically valuable substances characterized by rapid growth and relatively undemanding cultivation conditions.

No Thumbnail Available
Publication

Antibacterial, antifungal, and phytochemical properties of Salsola kali ethanolic extract

2024, Bashir, Shimaa, Behiry, Said, Al-Askar, Abdulaziz A., Kowalczewski, Przemysław Łukasz, Emaish, Haitham H., Abdelkhalek, Ahmed

Abstract The research into the use of plants as plentiful reservoirs of bioactive chemicals shows significant potential for agricultural uses. This study focused on analyzing the chemical composition and potency of an ethanolic extract obtained from the aerial parts (leaves and stems) of Salsola kali against potato pathogenic fungal and bacterial pathogens. The isolated fungal isolates were unequivocally identified as Fusarium oxysporum and Rhizoctonia solani based on morphological characteristics and internal transcribed spacer genetic sequencing data. The antifungal activity of the extract revealed good inhibition efficacy against R. solani (60.4%) and weak activity against F. oxysporum (11.1%) at a concentration of 5,000 µg/mL. The S. kali extract exhibited strong antibacterial activity, as evidenced by the significant inhibition zone diameter (mm) observed in all three strains of bacteria that were tested: Pectobacterium carotovorum (13.33), Pectobacterium atrosepticum (9.00), and Ralstonia solanacearum (9.33), at a concentration of 10,000 µg/mL. High-performance liquid chromatography analysis revealed the presence of several polyphenolic compounds (μg/g), with gallic acid (2942.8), caffeic acid (2110.2), cinnamic acid (1943.1), and chlorogenic acid (858.4) being the predominant ones. Quercetin and hesperetin were the predominant flavonoid components, with concentrations of 1110.3 and 1059.3 μg/g, respectively. Gas chromatography-mass spectrometry analysis revealed the presence of many bioactive compounds, such as saturated and unsaturated fatty acids, diterpenes, and phytosterols. The most abundant compound detected was n-hexadecanoic acid, which accounted for 28.1%. The results emphasize the potential of S. kali extract as a valuable source of bioactive substances that possess good antifungal and antibacterial effects, which highlights its potential for many agricultural uses.

No Thumbnail Available
Publication

The Effect of Osmotic Dehydration Conditions on the Potassium Content in Beetroot (Beta vulgaris L.)

2024, Kulczyński, Bartosz, Suliburska, Joanna, Gramza-Michałowska, Anna, Sidor, Andrzej, Kowalczewski, Przemysław Łukasz, Brzozowska, Anna

Osmotic dehydration as a process of removing water from food by immersing the raw material in a hypertonic solution is used primarily to extend the shelf life of products and as a pretreatment before further processing steps, such as drying and freezing. However, due to the bi-directional mass transfer that occurs during osmotic dehydration, the process can also be used to shape sensory properties and enrich the plant matrix with nutrients. The purpose of this study was to evaluate the effect of osmotic dehydration on the absorption of potassium by beet pulp immersed in various hypertonic solutions (sucrose, inulin, erythritol, xylitol solutions) with the addition of three chemical forms of potassium (gluconate, citrate, chloride) using variable process conditions. The study proved that osmotic dehydration is an effective way to enrich food. The highest potassium content (5779.03 mg/100 g) was found in a sample osmotically dehydrated in a 50% erythritol solution with 5.0% potassium chloride addition with a process that lasted 180 min and took place at 30 °C. The results obtained indicate the high potential of osmotic dehydration in improving the health values of food products. In addition, the antioxidant activity and proximate composition of osmotically dehydrated samples were also characterized in this study.

No Thumbnail Available
Publication

Pasta with Kiwiberry (Actinidia arguta): Effect on Structure, Quality, Consumer Acceptance, and Changes in Bioactivity during Thermal Treatment

2022, Osoś, Agata, Jankowska, Patrycja, Drożdżyńska, Agnieszka, Różańska, Maria Barbara, Biegańska-Marecik, Róża, Baranowska, Hanna Maria, Ruszkowska, Millena, Kačániová, Miroslava, Tomkowiak, Agnieszka, Kieliszek, Marek, Kowalczewski, Przemysław Łukasz

In this study, kiwiberry lyophilizate (KBL) was incorporated into pasta at different levels (5%, 10%, and 15% w/w). Kiwiberry fruits’ characteristics (ascorbic acid, carotenoids, phenolic compounds, and antioxidant activity determination) as well as physical (cooking properties, color, microscopic structure determination, texture, and water molecular dynamics analysis by low-field NMR) and chemical analyses (proximate composition phenolic compounds composition and antioxidant activity) of KBL-enriched pasta were investigated. The replacement of semolina with KBL in the production of pasta significantly changed its culinary properties. Results showed that the addition of KBL leads to a reduction in optimal cooking time and cooking weight (47.6% and 37.3%, respectively). Additionally, a significant effect of the KBL incorporation on the color of both fresh and cooked pasta was observed. A significant reduction in the L* value for fresh (27.8%) and cooked (20.2%) pasta was found. The KBL-enriched pasta had a different surface microstructure than the control pasta and reduced firmness (on average 44.7%). Low-field NMR results have confirmed that the ingredients in kiwiberry fruit can bind the water available in fresh pasta. The heat treatment resulted in increasing the availability of phenolic compounds and the antioxidant activity (64.7%) of cooked pasta. Sensory evaluation scores showed that the use of 5–10% of the KBL additive could be successfully accepted by consumers.

No Thumbnail Available
Publication

Thermogravimetric (TG/DTG) characterization of cold-pressed oil blends and Saccharomyces cerevisiae-based microcapsules obtained with them

2024, Ostrowska-Ligęza, Ewa, Cichocki, Wojciech, Baranowska, Hanna Maria, Kowalczewski, Przemysław Łukasz

Abstract The aim of this study was to develop yeast-based microcapsules (YBMCs) containing vegetable oil blends with n3/n6 fatty acids in a ratio of 5:1. The oil blends, as well as YBMCs with these oils, were analyzed in nitrogen and oxygen. The shape and course of the TG and DTG curves were observed for yeast cells with all types of oil blends. No differences were observed in shape because of the microencapsulation curves with all oil blends between YMBCs prepared using native and autolyzed yeast. The results show that the yeast cells could be used as efficient microcarriers for the encapsulation of cold-pressed oils in order to provide thermal stable ingredients for the food industry.

No Thumbnail Available
Publication

Antioxidant and antimicrobial activities of Salsola imbricata methanolic extract and its phytochemical characterization

2024, Aamer, Helmy A., Elalem, Saad F., Al-Askar, Abdulaziz A., Sharaf, Omaima A., Gaber, Mahmoud A., Kowalczewski, Przemysław, Behiry, Said, Abdelkhalek, Ahmed

Abstract Methanolic extract from Salsola imbricata was investigated for its phytochemical content, antioxidant, and antimicrobial properties against phytopathogenic fungi and bacteria. Phytochemical analysis revealed the presence of saponin, tannins, and alkaloids with 1.25%, 18.8 mg catechin/g of extract, and 9.12%, respectively. Total flavonoid content was 20.8 mg quercetin equivalent/g while total phenolic content was 202 mg gallic acid equivalent/g. Antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl assay resulted in an IC50 value of 48.61 µg/mL, while the phosphomolybdenum method yielded a value of 215.43 mg ascorbic acid equivalent/g of extract. The highest phenolic acids detected in the extract were gallic acid (712.97 µg/g), syringic acid (742.7 µg/g), and caffeic acid (474.70 µg/g) according to high-performance liquid chromatography analysis. Palmitic acid (28.38%) dominated the fatty acids identified by gas chromatography–mass spectrometry, while stigmasterol (8.34%) was the most abundant steroid. At a concentration of 3 mg/mL, the extract showed strong antibacterial activity against Pectobacterium carotovorum (10.50 mm), Ralstonia solanacearum (9.93 mm), and Pectobacterium atrosepticum (8.37 mm). Additionally, the extract significantly suppressed fungal growth of Rhizoctonia solani (38.22%) and Fusarium oxysporum (33.56%) but showed lower activity toward Botrytis cinerea (13.33%) at 5 mg/mL. In conclusion, S. imbricata extract exhibited promising antioxidant and antimicrobial properties, making it a potential candidate for further exploration in agricultural applications.

No Thumbnail Available
Publication

Development and application of a model for the automatic evaluation and classification of onions (Allium cepa L.) using a Deep Neural Network (DNN)

2024, Rybacki, Piotr, Przygodziński, Przemysław, Kowalczewski, Przemysław Łukasz, Sawinska, Zuzanna, Kowalik, Ireneusz, Osuch, Andrzej, Osuch, Ewa

No Thumbnail Available
Publication

Copper oxide–ferric oxide nanocomposite: Synthesis, characterization, and antibacterial and antifungal properties

2024, Elnouby, Mohamed, Nabil, Marwa, Al-Askar, Abdulaziz A., Kowalczewski, Przemysław Łukasz, Behiry, Said, Abdelkhalek, Ahmed

Abstract Recently, copper oxide–ferric oxide nanocomposites (CuO/Fe2O3-NCs) have gained popularity and are widely employed in various applications. However, their effectiveness against phytopathogens has not been studied yet. This study investigates the synthesis and characterization of CuO/Fe2O3-NCs using the hydrothermal technique. X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FTIR) were used to characterize the produced nanocomposite (NC). EDX and TEM analyses revealed the presence of Cu, Fe, and O elements. The NC had a polygonal shape with sides around 12 nm, spherical CuO particles of 7–10 nm, and plate-like Fe2O3. XRD measurements confirmed the crystal and hexagonal structures of CuO and Fe2O3. The XRD patterns of CuO/Fe2O3 showed the characteristic peaks of (−111) and (004) reflections for CuO at 35.69° and 37.73°. The FTIR spectra showed characteristic lines at 525 and 567 cm−1 for the Cu–O bond and Fe–O stretching modes of Fe2O3, respectively. The antifungal activity of CuO/Fe2O3-NCs showed significant growth inhibition of Fusarium oxysporum, Rhizoctonia solani, and Botrytis cinerea by up to 71, 50, and 81%, respectively, at 100 µg/mL. At 50 µg/mL, the antibacterial test revealed inhibition zones of 12.33 mm for Pectobacterium carotovorum, 9.33 mm for Streptomyces scabies, 10.67 mm for Pectobacterium atrosepticum, and 14.67 mm for Ralstonia solanacearum. The results show that CuO/Fe2O3-NCs can efficiently suppress the growth of various fungal and bacterial strains, making them potential antimicrobial agents against phytopathogenic microorganisms.

No Thumbnail Available
Publication

Torilis arvensis ethanolic extract: Phytochemical analysis, antifungal efficacy, and cytotoxicity properties

2024, Khalil, Abdallah, Abdelwahab, Eman A., Sharaf, Omaima A., Al-Askar, Abdulaziz A., Kowalczewski, Przemysław Łukasz, Abdelkhalek, Ahmed, Behiry, Said

Abstract The aim of the current study is to assess the phytochemical contents, antifungal activity, and cytotoxicity characteristics of an ethanolic extract derived from the entire Torilis arvensis plant. High-performance liquid chromatography examination of the extract revealed that the primary phenolic components were benzoic, o-coumaric, and vanillic acids with concentrations of 259.1, 220.4, and 111.3 µg/g of extract, respectively. The highest flavonoids were catechol (117.9 µg/g) and kaempferol (108.7 µg/g). The extract is notable for its high concentration of long-chain saturated and unsaturated fatty acids, as well as its presence of 17 gas chromatography-mass spectrometry bioactive chemicals. Three soil-borne pathogenic fungi, Rhizoctonia solani, Fusarium solani, and Fusarium oxysporum, were molecularly identified and assessed for the antifungal activity of the extract. The extract showed the highest growth inhibition against R. solani, F. oxysporum, and F. solani at 300 µg/mL, with inhibition rates of 88.9, 71.5, and 67.8%, respectively. T. arvensis treatments were generally non-toxic after proceeding with cytotoxicity assay on the onion root tip cells, with no chromosomal abnormalities detected even at the highest concentration (300 µg/mL). These findings highlight the potential of T. arvensis extract as a safe and effective antifungal agent with a rich phytochemical profile.

No Thumbnail Available
Publication

Edible insects as a potential product for achieving global food security. Part 1

2024, Platta, Anna, Mikulec, Anna, Radzymińska, Monika, Suwała, Grzegorz, Zborowski, Marek, Ruszkowska, Millena, Nowicki, Marcin, Kowalczewski, Przemysław Łukasz

No Thumbnail Available
Publication

Phytochemical composition and antifungal effectiveness of Phoenix dactylifera L. rachis extracts

2024, Abdelkhalek, Ahmed, Abdelwahab, Eman A., Elalem, Saad F., Al-Askar, Abdulaziz A., Kowalczewski, Przemysław Łukasz, Behiry, Said

Abstract The present study appraised the inhibitory role of ethanol (PDEE) and ethyl acetate (PDEAE) extracts of Phoenix dactylifera L. against three molecularly identified fungi: Fusarium oxysporum, Botrytis cinerea, and Rhizoctonia solani. HPLC analysis revealed that gallic acid was the major phenolic compound in both extracts: (PDEE: 1721.90 μg/g) and (PDEAE: 101.53 μg/g). The major flavonoids in PDEE are rutin, kaempferol, and quercetin, whereas PDEAE contains kaempferol, naringenin, and quercetin. The GC-MS showed 11-octadecenoic acid methyl ester (26.25%) is the highest compound in PDEE, while diisooctyl phthalate (18.82%) is the most important compound in PDEAE. At 50 μg/mL, the inhibition percentage of PDEAE initiated the highest growth inhibition of F. oxysporum (49.63%) and R. solani (71.43%). Meanwhile, PDEE at 200 μg/mL initiated an inhibition value of 77.78% for B. cinerea. As a result, PDEAE is considered more effective than PDEE in controlling the growth of selected isolates.

No Thumbnail Available
Publication

Convolutional neural network model for the qualitative evaluation of geometric shape of carrot root

2024, Rybacki, Piotr, Sawinska, Zuzanna, Kačániová, Miroslava, Kowalczewski, Przemysław Łukasz, Osuch, Andrzej, Durczak, Karol

The main objective of the study is the development of an automatic carrot root classification model, marked as CR-NET, with the use of a Convolutional Neural Network (CNN). CNN with a constant architecture was built, consistingof an alternating arrangement of five Conv2D, MaxPooling2D and Dropout classes, for which in the Python 3.9 programming language a calculation algorithm was developed. It was found that the classification process of the carrot root images was carried out with an accuracy of 89.06%, meaning that 50 images were misclassified. The highest number of 21 erroneously classified photographs were from the extra class, of which 15 to the first class, thus not resulting in significant loss. However, assuming the number of refuse as the classification basis, the model accuracy greatly increases to 98.69%, as only 6 photographs were erroneously assigned.

No Thumbnail Available
Publication

Potato Protein-Based Vegan Burgers Enriched with Different Sources of Iron and Fiber: Nutrition, Sensory Characteristics, and Antioxidants before and after In Vitro Digestion

2024, Kowalczewski, Przemysław Łukasz, Wróbel, Martyna Maria, Smarzyński, Krzysztof, Zembrzuska, Joanna, Ślachciński, Mariusz, Jeżowski, Paweł, Tomczak, Aneta, Kulczyński, Bartosz, Zielińska-Dawidziak, Magdalena, Sałek, Karina, Kmiecik, Dominik

The aim of this research was to develop a technology for the production of plant-based burgers (PBBs) based on potato protein, also containing high content of iron and appropriately selected fats. The produced PBBs were characterized in terms of their nutritional and bioactive properties both before and after the in vitro digestion process. It was found that the produced burger was characterized by high protein content, ranging from 20.80 to 22.16 g/100 g. It was also shown to have a high dietary fiber content, ranging from 8.35 to 9.20 g/100 g. The main fraction of dietary fiber in the tested samples was insoluble fiber, which accounted for approximately 89% of the total fiber content. In addition, noteworthy is the high digestibility of the protein, reaching approximately 95% for the potato fiber used in the formulation, and about 85% for the oat fiber. Produced PBBs also provide significant amounts of iron, with the use of an organic iron source greatly increasing its quantity in the final product. The analyzed antioxidant properties before and after the digestion process showed a tenfold increase in biological activity after digestion, indicating that the examined PBBs may counteract oxidative stress. Analyzing the chemical and biological properties, it is impossible not to assess consumer attractiveness. It has been shown that PBB1, which contains potato fiber and powdered sprouts enriched with ferritin, received the highest attractiveness ratings among respondents.

No Thumbnail Available
Publication

Field Cricket (Gryllus bimaculatus) and Spirulina (Arthrospira platensis) Powders as Environmentally Friendly Protein Enrichment Ingredients in Corn Snacks

2024, Ruszkowska, Millena, Tańska, Małgorzata, Miedzianka, Joanna, Kowalczewski, Przemysław Łukasz

Unconventional protein sources are currently extensively studied as food ingredients. This study aimed to evaluate the effect of 1.5% and 3% field cricket powder (GB) and 2–8% of its mixture (1:1) with spirulina powder (S) on the nutritional value, physicochemical properties, and sensory characteristics of corn extrudates. Additionally, 2% baking powder (BP) was added to assess its impact on the properties of the enriched extrudates. The results showed that both GB and GB + S improved nutritional value, with protein content increasing by up to 46% and higher levels of essential amino acids, particularly leucine and valine. However, these ingredients decreased the expansion ratio (by up to 15%), colour lightness (by up to 30%), and yellowness (by up to 47%) and increased the hardness (by up to 25%) of the corn extrudates. The S addition positively influenced product storage stability but decreased its sensory acceptance, especially aroma and taste. The BP addition mitigated the negative effects of higher GB and GB + S concentrations, particularly on sensory characteristics. In conclusion, incorporating up to 6% of the GB + S mixture provides a higher protein content with only minor changes to the product’s characteristics compared to GB. Ratings exceeding 4.2 points indicate the good acceptability of these snacks.

No Thumbnail Available
Publication

Expression patterns of candidate genes for the Lr46/Yr29 “slow rust” locus in common wheat (Triticum aestivum L.) and associated miRNAs inform of the gene conferring the Puccinia triticina resistance trait

2024, Spychała, Julia, Tomkowiak, Agnieszka, Noweiska, Aleksandra, Bobrowska, Roksana, Rychel-Bielska, Sandra, Bocianowski, Jan, Wolko, Łukasz, Kowalczewski, Przemysław Łukasz, Nowicki, Marcin, Kwiatek, Michał Tomasz

Leaf rust caused by Puccinia triticina (Pt) is one of the most impactful diseases causing substantial losses in common wheat (Triticum aestivum L.) crops. In adult plants resistant to Pt, a horizontal adult plant resistance (APR) is observed: APR protects the plant against multiple pathogen races and is distinguished by durable persistence under production conditions. The Lr46/Yr29 locus was mapped to chromosome 1B of common wheat genome, but the identity of the underlying gene has not been demonstrated although several candidate genes have been proposed. This study aimed to analyze the expression of nine candidate genes located at the Lr46/Yr29 locus and their four complementary miRNAs (tae-miR5384-3p, tae-miR9780, tae-miR9775, and tae-miR164), in response to Pt infection. The plant materials tested included five reference cultivars in which the molecular marker csLV46G22 associated with the Lr46/Yr29-based Pt resistance was identified, as well as one susceptible control cultivar. Biotic stress was induced in adult plants by inoculation with fungal spores under controlled conditions. Plant material was sampled before and at 6, 12, 24, 48 hours post inoculation (hpi). Differences in expression of candidate genes at the Lr46/Yr29 locus were analyzed by qRT-PCR and showed that the expression of the genes varied at the analyzed time points. The highest expression of Lr46/Yr29 candidate genes (Lr46-Glu1, Lr46-Glu2, Lr46-Glu3, Lr46-RLK1, Lr46-RLK2, Lr46-RLK3, Lr46-RLK4, Lr46-Snex, and Lr46-WRKY) occurred at 12 and 24 hpi and such expression profiles were obtained only for one candidate gene among the nine genes analyzed (Lr46-Glu2), indicating that it may be a contributing factor in the resistance response to Pt infection.